ULTIMET® alloy

Principal Features

STELLITE alloy-like wear resistance and HASTELLOY alloy-like corrosion resistance in a single, highly weldable material

ULTIMET[®] alloy (UNS R31233) provides a unique blend of properties. From a wear standpoint, it behaves like the STELLITE[®] alloys with lower carbon contents. From a corrosion standpoint, it possesses many of the attributes of the C-type and G-type HASTELLOY[®] materials, in particular outstanding resistance to chloride-induced pitting and crevice corrosion. Its mechanical and welding characteristics are much closer to those of the HASTELLOY[®] alloys than those of the STELLITE[®] alloys, whose low ductilities can be problematic. While ULTIMET[®] alloy has been used successfully in the form of wrought products, its largest applications have involved weld overlays, made with solid wire consumables and arcwelding processes such as GMAW (MIG) and GTAW (TIG).

Nominal Composition

Cobalt:	54 Balance
Chromium:	26
Nickel:	9
Molybdenum:	5
Iron:	3
Tungsten:	2
Manganese:	0.8
Silicon:	0.3
Nitrogen:	0.08
Carbon:	0.06

Weight %

ISO-Corrosion Diagrams

Each of these iso-corrosion diagrams was constructed using numerous corrosion rate values, generated at different acid concentrations and temperatures. The blue line represents those combinations of acid concentration and temperature at which a corrosion rate of 0.1 mm/y (4 mils per year) is expected, based on laboratory tests in reagent grade acids. Below the line, rates under 0.1 mm/y are expected. Similarly, the red line indicates the combinations of acid concentration and temperature at which a corrosion rate of 0.5 mm/y (20 mils per year) is expected. Above the line, rates over 0.5 mm/y are expected. Between the blue and red lines, corrosion rates are expected to fall between 0.1 and 0.5 mm/y.

Haynes International - ULTIMET® alloy

Comparative 0.1 mm/y Line Plots

To compare the performance of ULTIMET[®] alloy with that of other materials, it is useful to plot the 0.1 mm/y lines. In the following graphs, the lines for ULTIMET[®] alloy are compared with those of two popular, austenitic stainless steels (316L and 254SMO), and two nickel alloys (625 and C-22), in hydrochloric and sulfuric acids. The tests in hydrochloric acid were limited to a concentration of 20% (the azeotrope). At hydrochloric acid concentrations up to 15%, the performance of ULTIMET[®] alloy matches that of alloy 625 at many concentrations.

Selected Corrosion Data

Conc.	50°F	75°F	100°F	125°F	150°F	175°F	200°F	225°F	
Wt.%	10°C	24°C	38°C	52°C	66°C	79°C	93°C	107°C	Boiling
1	-	-	-	-	-	-	-	-	<0.05
1.5	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-
2.5	-	-	-	-	<0.01	<0.01	<0.01	-	43.85
3	-	-	-	-	-	-	-	-	-
3.5	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-
4.5	-	-	-	-	-	-	-	-	-
5	-	-	-	-	0.01	5.75	-	-	-
7.5	-	-	-	-	-	-	-	-	-
10	-	<0.01	0.16	0.8	1.74	-	-	-	-
15	-	0.15	0.73	1.83	4.75	-	-	-	-
20	-	0.17	0.56	1.04	2.58	_	-	-	-

Hydrochloric Acid

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Job 181-90.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for ULTIMET Alloy in Hydrochloric Acid

Haynes International - ULTIMET® alloy

Selected Corrosion Data Continued

Conc.	50°F	75°F	100°F	125°F	150°F	175°F	200°F	225°F	
Wt.%	10°C	24°C	38°C	52°C	66°C	79°C	93°C	107°C	Boiling
10	-	-	-	-	-	-	-	-	<0.01
20	-	-	-	-	-	-	-	-	<0.01
30	-	-	-	-	-	-	-	-	0.01
40	-	-	-	-	-	-	-	-	0.03
50	-	-	-	-	-	-	-	-	0.07
60	-	-	-	-	-	-	0.03	-	0.12
65	-	-	-	-	-	-	0.04	-	0.15
70	-	-	_	-	-	-	0.06	_	0.18

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Job 182-90.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Selected Corrosion Data Continued

Conc.	125°F	150°F	175°F	200°F	225°F	250°F	
Wt.%	52°C	66°C	79°C	93°C	107°C	121°C	Boiling
10	-	-	-	-		-	<0.01
20	-	-	-	-		-	0.01
30	-	-	-	-		-	0.01
40	-	-	-	-		-	0.03
50	-	-	-	<0.01	-	-	0.14
60	-	-	-	0.01	-	0.01	0.25
70	-	-	-	0.01	0.01	0.02	0.46
80	_	-	_	0.01	0.07	0.55	10.95
85	-	-	-	0.01	0.07	0.57	30.58

Phosphoric Acid

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Job 183-90.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for ULTIMET Alloy in Phosphoric Acid

Selected Corrosion Data Continued

Conc.	75°F	100°F	125°F	150°F	175°F	200°F	225°F	250°F	275°F	300°F	350°F	
Wt.%	24°C	38°C	52°C	66°C	79°C	93°C	107°C	121°C	135°C	149°C	177°C	Boiling
1	-	-	-	-	-	-	-	-	-	-	-	0.13
2	-	-	-	-	-	<0.01	-	-	-	-	-	0.27
3	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	<0.01	-	0.01	-	-	-	-	-	1.26
10	-	-	-	-	-	0.43	-	-	-	-	-	1.92
20	-	-	-	<0.01	0.01	1.83	-	-	-	-	-	4.48
30	-	-	-	<0.01	1.36	3.58	-	-	-	-	-	10.54
40	-	<0.01	<0.01	0.29	2.25	-	-	-	-	-	-	20.94
50	-	<0.01	-	0.96	-	-	-	-	-	-	-	-
60	-	<0.01	<0.01	1.48	-	-	-	-	-	-	-	-
65	-	-	0.63	-	-	-	-	-	-	-	-	-
70	-	<0.01	0.55	-	-	-	-	-	-	-	-	-
80	-	<0.01	1.02	1.64	-	-	-	-	-	-	-	-
85	-	0.03	-	-	-	-	-	-	-	-	-	-
90	<0.01	0.26	1.68	-	-	-	-	-	-	-	-	-
96	<0.01	0.21	1.76	2.24	-	-	-	-	-	-	-	-

Sulfuric Acid

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Jobs 159-90 and 8-91.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for ULTIMET Alloy in Sulfuric Acid

Haynes International - ULTIMET® alloy

Selected Corrosion Data (Reagent Grade Solutions, mm/y)

	Concentration	100°F	125°F	150°F	175°F	200°F	
Chemical	wt. %	38°C	52°C	60°C	79°C	93°C	Boiling
Acetic Acid	99	-	-	-	-	-	<0.01
	1	-	-	-	-	-	0.05
	2.5	-	-	<0.01	<0.01	<0.01	43.85
Hydrochloric	5	-	-	0.01	-	-	-
Acid	10	0.16	0.8	1.74	-	-	-
	15	0.73	1.83	-	-	-	-
	20	0.56	1.04	-	-	-	-
	10	-	-	-	-	-	<0.01
	20	-	-	-	-	-	<0.01
	30	-	-	-	-	-	0.01
Nitric	40	-	-	-	-	-	0.03
Acid	50	-	-	-	-	-	0.07
	60	-	-	-	-	0.03	0.12
	65	-	-	-	-	0.04	0.15
	70	-	-	-	-	0.06	0.18
	10	-	-	-	-	-	<0.01
	20	-	-	-	-	-	0.01
	30	-	-	-	-	-	0.01
Dhaanharia	40	-	-	-	-	-	0.03
Acid	50	-	-	-	-	<0.01	0.14
Acia	60	-	-	-	-	0.01	0.24
	70	-	-	-	-	0.01	0.45
	80	-	-	-	-	0.01	10.92
	85	-	-	-	-	0.01	30.58
	1	-	-	-	-	-	0.13
	2	-	-	-	-	<0.01	0.27
	5	-	-	<0.01	-	0.01	1.26
	10	-	-	-	-	0.43	1.92
	20	-	-	<0.01	0.01	1.83	-
Sulfurio	30	-	-	<0.01	1.36	-	-
Sulturic	40	<0.01	<0.01	0.29	2.25	-	-
	50	<0.01	-	0.96	-	-	-
	60	<0.01	<0.01	1.48	-	-	-
	70	<0.01	0.55	-	-	-	-
	80	<0.01	1.02	-	-	-	-
	90	0.26	1.68	-	-	-	-
	96	0.21	1.76	-	-	-	-

Galling Resistance

Haynes International - ULTIMET® alloy

Erosion Resistance

Abrasion Wear

Resistance to Pitting & Crevice Corrosion

ULTIMET[®] alloy exhibits very high resistance to chloride-induced pitting and crevice attack, forms of corrosion to which the austenitic stainless steels are particularly prone. To assess the pitting resistance of ULTIMET[®] alloy relative to other corrosion-resistant materials, it has been subjected to tests in Green Death (11.5% $H_2SO_4 + 1.2\%$ HCl + 1% FeCl₃ + 1% CuCl₂). Experiments wereperformed at various temperatures (in increments of 5°C) to determine the lowest temperature at which pitting occurs in a 24 h test period (the so-called Critical Pitting Temperature for Green Death). The results were as follows:

Alloy	Critical Pitting	g Temperature
-	°F	°C
ULTIMET®	248	120
C-22 [®]	248	120
C-276	230	110
625	167	75
6B	113	45
316L	77	25

Resistance to Stress Corrosion Cracking

Sulfide Stress Cracking

Wrought ULTIMET[®] alloy has been tested according to NACE TM0177, which defines sulfide stress cracking as a room temperature phenomenon, resulting from hydrogen embrittlement.

The TM0177 tests involved 5% NaCl + 0.5% glacial acetic acid, saturated with H_2S , proofring apparatus, and samples coupled to carbon steel and stressed to the point of yield. ULTIMET[®] alloy was able to withstand these conditions, both annealed and cold-reduced (15%), indicating good resistance to hydrogen embrittlement.

H₂S – Induced Stress Corrosion Cracking

Cracking at elevated temperatures in environments containing H_2S is defined as a form of stress corrosion cracking.

Wrought ULTIMET[®] alloy has been tested in 20% NaCl + 0.517 MPa (75 psi) H_2S + 4.83 MPa (700 psi) CO₂, with and without 0.5 g/l sulfur, at 121°C and 177°C; the tests were conducted according to the recommendations of ASTM Standard G 39, the fixtures being made of ULTIMET alloy, to prevent galvanic effects.

Like other materials, ULTIMET[®] alloy was prone to cracking in the cold-reduced condition, but resistant to H₂S-induced stress corrosion cracking in the annealed condition, at these temperatures.

Resistance to Seawater Crevice Corrosion

Seawater is probably the most common aqueous salt solution. Not only is it encountered in marine transportation and offshore oil rigs, but it is also used as a coolant in coastal facilities. Listed are data generated as part of a U.S. Navy study at the LaQue Laboratories in Wrightsville Beach, North Carolina (and published by D.M. Aylor et al, Paper No. 329, CORROSION 99, NACE International, 1999). Crevice tests were performed in both still (quiescent) and flowing seawater, at 29°C, plus or minus 3°C. Two samples (A & B) of each alloy were tested in still water for 180 days, and likewise in flowing water. Each sample contained two possible crevice sites. The results indicate that ULTIMET[®] alloy is even more resistant to crevice corrosion in seawater than C-276 alloy.

Alloy	Qı	liescent	Flowing		
	No. of Sites	Maximum Depth of	No. of Sites	Maximum Depth of	
-	Attacked	Attack, mm	Attacked	Attack, mm	
316L	A:2, B:2	A:1.33, B:2.27	A:2, B:2	A:0.48, B:0.15	
254SMO	A:2, B:2	A:0.76, B:1.73	A:2, B:2	A:0.01, B:<0.01	
625	A:2, B:2	A:0.18, B:0.04	A:2, B:2	A:<0.01, B:<0.01	
C-276	A:1, B:1	A:0.10, B:0.13	A:0, B:0	A:0, B:0	
C-22®	A:0, B:0	A:0, B:0	A:0, B:0	A:0, B:0	
ULTIMET ®	A:0, B:0	A:0, B:0	A:0, B:0	A:0, B:0	

Corrosion Resistance of Welds

One of the most important product forms of ULTIMET[®] alloy is welding wire, since many applications involve ULTIMET[®] weld overlays. These overlays are, of course, subject to dilution from the substrate material, often a steel or stainless steel. To provide some idea of the influence of dilution upon the corrosion resistance of ULTIMET[®] weld overlays, a study was undertaken whereby pre-diluted consumables were made by the aspiration casting process, and all-weld-metal (AWM) samples made by deposition on chilled copper blocks. Thus, it was possible to conduct regular (rather than one-sided) corrosion tests in acid solutions on homogeneous samples, diluted with specific substrate materials.

	Corrosion Rate, mm/y						
	3% HCI, 66°C (150°F)	Boiling 65% HNO ₃	Boiling 2% H ₂ SO ₄				
Undiluted	0.68	0.15	0.41				
Diluted with 9.1%/G10400	1.8	0.3	0.69				
Diluted with 9.1%/S31603	1.42	0.25	0.58				
Diluted with 16.7%/G10400	2.13	0.3	0.84				
Diluted with 16.7%/S31603	2.08	0.23	0.48				

Physical Properties

Physical Property	Bri	tish Units	Metric Units	
Density	RT	0.306 lb/in. ³	RT	8.47 g/cm. ³
	RT	34.3 µohm.in	RT	0.87 µohm.m
	200°F	35.2 µohm.in	100°C	0.89 µohm.m
Els stris el	400°F	36.7 µohm.in	200°C	0.93 µohm.m
Electrical	600°F	38.2 µohm.in	300°C	0.96 µohm.m
Resistivity	800°F	39.6 µohm.in	400°C	1.00 µohm.m
	1000°F	40.9 µohm.in	500°C	1.03 µohm.m
	-	-	600°C	1.05 µohm.m
	RT	87 Btu.in/h.ft ² .°F	RT	12.3 W/m.°C
	200°F	95 Btu.in/h.ft ² .°F	100°C	13.8 W/m.°C
The arread	400°F	109 Btu.in/h.ft ² .°F	200°C	15.6 W/m.°C
Conductivity	600°F	123 Btu.in/h.ft ² .°F	300°C	17.5 W/m.°C
Conductivity	800°F	138 Btu.in/h.ft ² .°F	400°C	19.4 W/m.°C
	1000°F	155 Btu.in/h.ft ² .°F	500°C	21.5 W/m.°C
	-	-	600°C	23.9 W/m.°C
	RT	0.005 in.²/s	RT	0.033 x 10 ⁻⁶ cm ² /s
	200°F	00°F 0.005 in. ² /s 100°		0.035 x 10 ⁻⁶ cm ² /s
Thormal	400°F	0.006 in.²/s	0.006 in. ² /s 200°C	
Diffusivity	600°F	0.007 in. ² /s 300°C		0.042 x 10 ⁻⁶ cm ² /s
Dinusivity	800°F	0.007 in.²/s	400°C	0.045 x 10 ⁻⁶ cm ² /s
	1000°F	0.007 in.²/s	500°C	0.047 x 10 ⁻⁶ cm ² /s
	-	-	600°C	0.050 x 10 ⁻⁶ cm ² /s
	78-200°F	7.2 μin/in.°F	26-100°C	13.0 µm/m.°C
	78-400°F	7.5 µin/in.°F	26-200°C	13.4 µm/m.°C
	78-600°F	7.8 µin/in.°F	26-300°C	14.0 µm/m.°C
Mean Coefficient of	78-800°F	8.0 µin/in.°F	26-400°C	14.3 µm/m.°C
Thermal Expansion	78-1000°F	8.2 µin/in.°F	26-500°C	14.8 µm/m.°C
	78-1200°F	8.4 µin/in.°F	26-600°C	15.0 µm/m.°C
	78-1400°F	8.8 µin/in.°F	26-700°C	15.4 µm/m.°C
	78-1600°F	9.1 µin/in.°F	26-800°C	16.1 µm/m.°C
	100°F	0.110 Btu/lb.°F	RT	456 J/kg.°C
	200°F	0.112 Btu/lb.°F	100°C	470 J/kg.°C
	400°F	0.116 Btu/lb.°F	200°C	482 J/kg.°C
Specific Heat	600°F	0.121 Btu/lb.°F	300°C	504 J/kg.°C
	800°F	0.127 Btu/lb.°F	400°C	525 J/kg.°C
	1000°F	0.133 Btu/lb.°F	500°C	545 J/kg.°C
	-	-	600°C	573 J/kg.°C

RT= Room Temperature

Physical Properties Continued

Physical Property	British	n Units	Metric Units		
	RT	33.2 X 10 ⁶ psi	RT	229 GPa	
	200°F	32.6 X 10 ⁶ psi	100°C	224 GPa	
Dunamia Madulua	400°F	400°F 31.2 X 10 ⁶ psi		216 GPa	
Dynamic Modulus	600°F	29.9 X 10 ⁶ psi	300°C	208 GPa	
of Eldsticity	800°F	28.6 X 10 ⁶ psi	400°C	199 GPa	
	1000°F	27.4 X 10 ⁶ psi	500°C	192 GPa	
	1200°F	26.1 X 10 ⁶ psi	600°C	184 GPa	
Melting Range	2430-2470°F	-	1332-1354°C	-	

RT= Room Temperature

Impact Strength

These impact strengths were generated using Charpy V-notch samples, machined from mill annealed plate of thickness 12.7 mm (0.5 in).

Test Tem	nperature	Impact Strength		
°F	°C	ft-lbf	J	
RT	RT	130	176	
-40	-40	125	169	
-80	-62	119	161	
-320	-196	68	92	

RT= Room Temperature

Tensile Strength & Elongation

	Te	est	Thickness/		0.2% Offset		Ultimate		
	Tempe	erature	Bar Diameter		Yield Strength		Tensile Strength		Elongation
Form	°F	°C	in	mm	ksi	MPa	ksi	Мра	%
Sheet	RT	RT	0.063	1.6	72	496	138	951	42
Sheet	200	93	0.063	1.6	58	400	135	931	50
Sheet	400	204	0.063	1.6	45	310	134	924	62
Sheet	600	316	0.063	1.6	43	296	130	896	75
Sheet	800	427	0.063	1.6	41	283	120	827	76
Plate	RT	RT	0.25-1.5	6.4-38.1	79	545	148	1020	36
Plate	200	93	0.25-1.5	6.4-38.1	70	483	143	986	40
Plate	400	204	0.25-1.5	6.4-38.1	55	379	143	986	61
Plate	600	316	0.25-1.5	6.4-38.1	48	331	138	951	70
Plate	800	427	0.25-1.5	6.4-38.1	45	310	133	917	70
Plate	1000	538	0.25-1.5	6.4-38.1	38	262	125	862	70
Plate	1200	649	0.25-1.5	6.4-38.1	37	255	99	683	66
Plate	1400	790	0.25-1.5	6.4-38.1	39	269	76	524	70
Plate	1600	871	0.25-1.5	6.4-38.1	28	193	51	352	77
Plate	1800	982	0.25-1.5	6.4-38.1	16	110	31	214	100
Bar	RT	RT	0.5-2.0	12.7-50.8	76	524	147	1014	38
Bar	200	93	0.5-2.0	12.7-50.8	70	483	140	965	49
Bar	400	204	0.5-2.0	12.7-50.8	52	359	140	965	66
Bar	600	316	0.5-2.0	12.7-50.8	44	303	132	910	77
Bar	800	427	0.5-2.0	12.7-50.8	43	296	131	903	84
Bar	1000	538	0.5-2.0	12.7-50.8	40	276	114	793	79

RT= Room Temperature

Hardness

In the annealed condition, ULTIMET[®] alloy is not very hard. However, it has a high workhardening rate, and even stretching of sheets and flattening of plates during mill processing can increase its hardness. The hardnesses in this table were measured on mill sheets, and indicate how rapidly the alloy hardens upon cold working.

Condition	Hardness, HRC
Mill Annealed	30
10% Cold-Work	40
20% Cold-Worked	43
40% Cold-Worked	49

HRC= Hardness Rockwell "C".

Welding & Fabrication

ULTIMET[®] alloy is very amenable to the Gas Metal Arc (GMA/MIG), Gas Tungsten Arc (GTA/TIG), and Shielded Metal Arc (SMA/Stick) welding processes. Matching filler metals (i.e. spools, reels, coils, and cut straight lengths of solid wire, and coated electrodes) are available for these processes. Guidelines for weld surfacing with ULTIMET[®] alloy are detailed in a separate Haynes International document (HW-2099). Other arc processes have been used to weld ULTIMET[®] alloy; for more information on consumable availability for these other processes, please consult Haynes International. Matching filler metals (i.e. solid wires and coated electrodes) are available for these processes, and welding guide-lines are given in our "Welding and Fabrication" brochure.

Wrought products of ULTIMET[®] alloy are supplied in the Mill Annealed (MA) condition, unless otherwise specified. This solution annealing procedure has been designed to optimize the alloy's corrosion resistance and ductility. Following all hot forming operations, the material should be re-annealed, to restore optimum properties. The alloy should also be re-annealed after any cold forming operations that result in an outer fiber elongation of 7% or more. The annealing temperature for ULTIMET[®] alloy is 1177°C (2150°F), and water quenching is advised (rapid air cooling is feasible with structures thinner than 10 mm (0.375 in). A hold time at the annealing temperature of 10 to 30 minutes is recommended, depending on the thickness of the structure (thicker structures need the full 30 minutes).

ULTIMET[®] alloy can be hot worked and cold worked. However, it is very strong, and workhardens rapidly during cold working. The alloy may therefore require frequent, intermediate anneals, if cold working is employed. Please consult Haynes International for more details.

While cold work does not usually affect the resistance of ULTIMET[®] alloy to general corrosion, and to chloride-induced pitting and crevice attack, it can affect resistance to stress corrosion cracking. For optimum corrosion performance, therefore, the re-annealing of cold worked parts (following an outer fiber elongation of 7% or more) is important.

Welding & Fabrication Continued

		Test		0.2% Offset	Ultimate Tensile		
Form	Weld Type	Tempe	rature	Yield Strength	Strength	Elongation	
-	-	°F	°C	ksi*	ksi*	%	
	GTAW	RT	RT	89	127	11	
		RT	RT	98	121	6	
	(Short)	500	260	65	121	19	
Plate $1/2$ ln. (12 7mm)	(Short)	1000	538	53	114	28	
(12.711111) thick		RT	RT	93	133	11	
UNICK	(Spray)	500	260	67	121	19	
		1000	5.38	65	113	30	
	SMAW	RT	RT	97	135	9	
	GMAW (Short)	RT	RT	86	123	10	
		500	260	62	116	20	
Dista 2/4		1000	538	45	98	26	
$\begin{array}{c} \text{Plate 3/4} \\ (10.1 \text{ mm}) \end{array}$		RT	RT	90	136	15	
thick	GIVIAVV	500	260	64	121	23	
	(Spray)	1000	538	50	113	32	
		RT	RT	87	130	13	
	SIVIAVV	1000	538	48	109	32	

Welding Data Typical Transverse Tensile Data, Weldments

*ksi can be converted to MPa (megapascals) by multiplying by 6.895.

Welding & Fabrication Continued

	Test		0.2% Offset Yield	Ultimate Tensile	
Weld Type	Temperature		Strength	Strength	Elongation
-	°F	°C	ksi*	ksi*	%
GTAW	RT	-	95	133	10
GMAW (Short)	RT	-	89	132	17
GMAW (Spray)	RT	-	85	123	18
CMANA/	RT	-	93	13	16
SIVIAV	1000	-	61	100	31

Typical Tensile Data, All-Weld Metal

Typical Impact Strength, Weldments

Weld Type	V-Notch Impact Strength Room Temperature		
-	ftlb.	J	
GTAW	94	127	
SMAW	42	57	

Typical Bend Test Data, Welded Plate

Weld Type	Face Bend		Side	Bend
-	2T	3T	2T	3T
GMAW (Short)	Failed	Passed	Failed	Passed
GMAW (Spray)	Failed	Passed	Failed	Passed
SMAW	-	Passed	-	-

Duplicate specimens, 3/4 in. (19.10 mm) thick. Tested using AWS Specification 5.11 as a guide.

Specifications and Codes

Specifications

ULTIMET®				
(R3123	33)			
Sheet, Plate & Strip	SB818/B818			
Billet, Rod & Bar	B815			
Coated Electrodes	-			
Bare Welding Rods & Wire	-			
Seamless Pipe & Tube	-			
Welded Pipe & Tube	-			
Fittings	-			
Forgings	-			
DIN	No. 2.4681			
DIN	CoCr26Ni9Mo5W			
TÜV	-			
Others	NACE MR0175/MR0103			
Others	ISO 15156			

Codes						
	ULTIMET®					
	(R31233)				
	Section I		-			
		Class 1	-			
ASME	Section III	Class 2	-			
		Class 3	-			
	Section VIII	Div. 1	800°F (427°C) ¹			
		Div. 2	-			
	Section XII	-				
	B16.5	-				
	B16.34	-				
	B31.1	-				
B31.3		-				
VdTÜV (doc #)			-			

¹Approved material forms: Plate, Sheet, Bar

Disclaimer:

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data in this document but makes no representations or warranties as to the data's accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums. It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc., unless otherwise indicated.