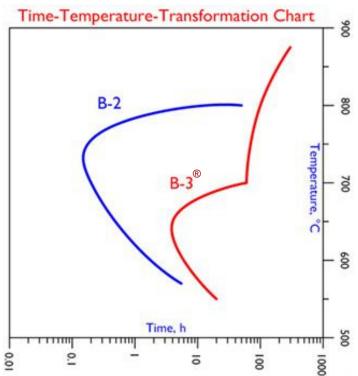
HASTELLOY® B-3® alloy

Principal Features

Exceptional resistance to HCI and H₂SO₄ and enhanced structural stability

HASTELLOY[®] B-3[®] alloy (UNS N10675) exhibits extremely high resistance to pure hydrochloric, hydrobromic, and sulfuric acids. Furthermore, it has greatly improved structural stability compared with previous B-type alloys, leading to fewer concerns during welding, fabrication, and service.

Like other nickel alloys (in the mill annealed condition), it is ductile, can be formed and welded, and resists stress corrosion cracking in chloride-bearing solutions. Also, it is able to withstand fluoride-bearing media and concentrated sulfuric acid, both of which result in damage to zirconium alloys.

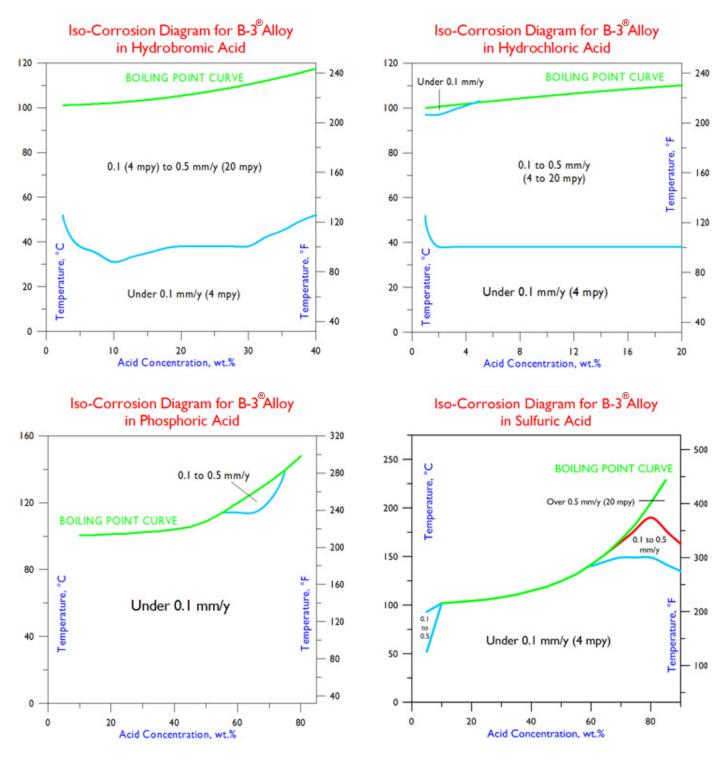

It is used in numerous chemical process industry (CPI) applications, especially in the construction of reaction vessels for pure, reducing acid service.

Nominal Composition

Weigh	it %		
Nickel:	65 min.		
Molybdenum:	28.5		
Chromium:	1.5		
Iron:	1.5		
Tungsten:	3 max.		
Manganese:	3 max.		
Cobalt:	3 max.		
Aluminum:	0.5 max.		
Titanium:	0.2 max.		
Silicon:	0.1 max.		
Carbon:	0.01 max.		
Niobium:	0.2 max.		
Vanadium:	0.2 max.		
Copper:	0.2 max.		
Tantalum:	0.2 max.		
Zirconium:	0.01 max.		

Weight %

Thermal Stability (T-T-T Chart)


The molybdenum content of the nickel-molybdenum (B-type) alloys is such that there is a strong tendency for phases other than the desirable (face-centered cubic) gamma phase to form in the microstructure, particularly in the temperature range 500°C to 900°C. The most deleterious of these alternate phases is Ni_4Mo , which forms quickly at certain temperatures, affects ductility, and reduces resistance to stress corrosion cracking.

The chief attribute of B-3[®] alloy, as compared with other modern B-type materials, is its greatly improved structural stability (in particular its reduced susceptibility to Ni_4Mo).

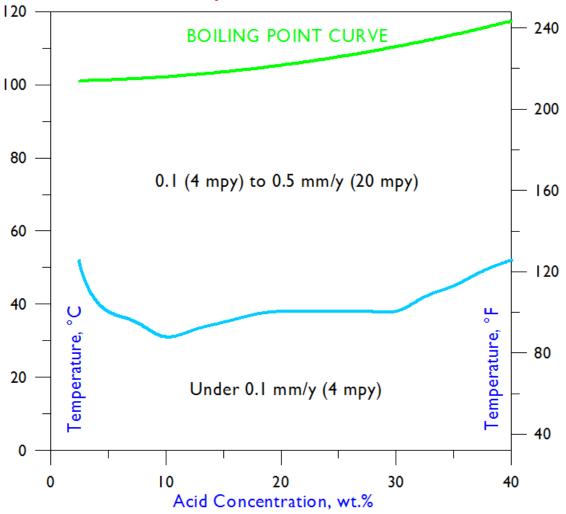
The time-temperature-transformation diagram shown above illustrates the advantages of B-3 alloy over its predecessor (B-2 alloy). Whereas B-2 alloy suffers from the rapid formation of Ni₄Mo at around 750°C, it takes several hours (at around 650°C), to induce deleterious second phases in B-3[®] alloy. This is due to the judicious use of minor elements and a shift in the molybdenum content, to induce the slowly-forming Ni₃Mo instead.

Iso-Corrosion Diagrams

Each of these iso-corrosion diagrams was constructed using numerous corrosion rate values, generated at different acid concentrations and temperatures (up to the boiling point). The blue line represents those combinations of acid concentration and temperature at which a corrosion rate of 0.1 mm/y (4 mils per year) is expected, based on laboratory tests in reagent grade acids. Below the line, rates under 0.1 mm/y are expected. The red line in the sulfuric acid diagram indicates the combinations of acid concentration and temperature at which a corrosion rate of 0.5 mm/y (20 mils per year) is expected. Above the red line, rates over 0.5 mm/y are expected. Between the blue and red lines, corrosion rates are expected to fall between 0.1 and 0.5 mm/y. These diagrams do not predict the corrosion rates above the boiling point curves.

Haynes International - HASTELLOY® B-3® alloy

Selected Corrosion Data


Conc.	50°F	75°F	100°F	125°F	150°F	175°F	200°F	225°F	
Wt.%	10°C	24°C	38°C	52°C	66°C	79°C	93°C	107°C	Boiling
2.5	-	-	0.07	0.11	0.26	-	0.24	-	0.02
5	-	0.04	0.1	-	0.27	-	0.25	-	0.03
7.5	-	-	-	-	-	-	-	-	-
10	-	0.05	0.15	-	0.29	-	0.28	-	0.1
15	-	-	-	-	-	-	-	-	-
20	-	0.04	0.12	0.19	0.27	-	0.27	-	0.1
25	-	-	-	-	-	-	-	-	-
30	-	0.03	0.1	0.15	0.2	-	0.29	-	0.29
40	-	0.02	0.06	0.11	0.16	-	0.25	-	0.43

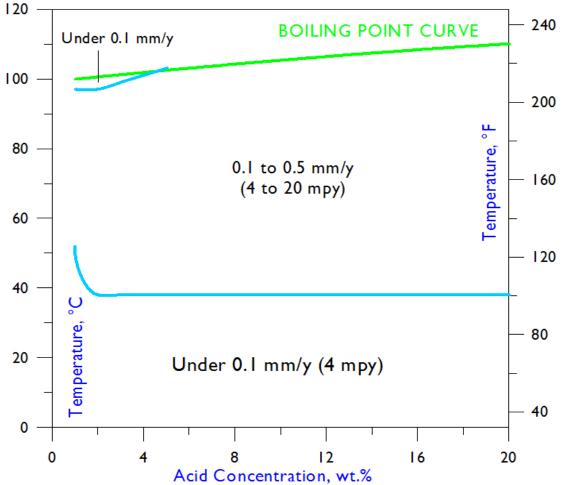
Hydrobromic Acid

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Jobs 71-97, 26-99, and 49-99.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for B-3[®]Alloy in Hydrobromic Acid

Selected Corrosion Data Continued


Conc.	50°F	75°F	100°F	125°F	150°F	175°F	200°F	225°F		
Wt.%	10°C	24°C	38°C	52°C	66°C	79°C	93°C	107°C	Boiling	
1	-	-	0.07	0.11	0.18	-	0.21	-	0.01	
1.5	-	-	-	-	-	-	-	-	-	
2	-	-	0.1	0.16	0.21	-	0.26	-	0.04	
2.5	-	-	-	-	-	-	-	-	-	
3	-	-	-	-	-	-	-	-	-	
3.5	-	-	-	-	-	-	-	-	-	
4	-	-	-	-	-	-	-	-	-	
4.5	-	-	-	-	-	-	-	-	-	
5	-	-	0.11	0.19	0.25	-	0.3	-	0.08	
7.5	-	-	-	-	-	-	-	-	-	
10	_	-	0.13	0.2	0.24	-	0.29	-	0.13	
15	-	-	0.1	0.18	0.23	-	0.28	-	0.21	
20	_	-	0.1	0.15	0.21	-	0.3	-	0.29	

Hydrochloric Acid

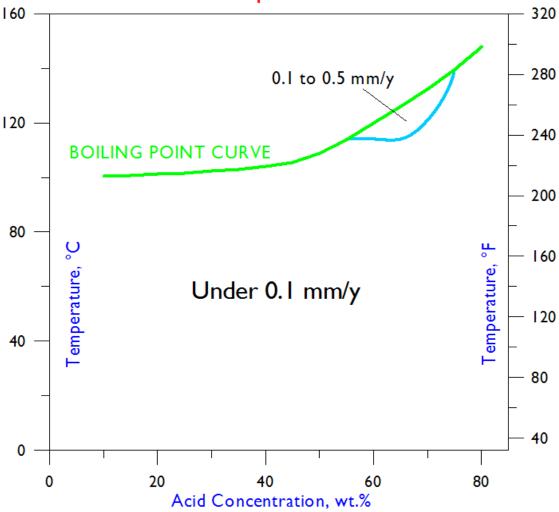
All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Jobs 37-92, 30-94, and 42-95.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for B-3[®]Alloy in Hydrochloric Acid

Haynes International - HASTELLOY® B-3® alloy

Selected Corrosion Data Continued


Conc.	125°F	150°F	175°F	200°F	225°F	250°F	275°F	300°F	
Wt.%	52°C	66°C	79°C	93°C	107°C	121°C	135°C	149°C	Boiling
10	-	-	-	-	-	-	-	-	0.07
30	-	-	-	-	-	-	-	-	0.07
50	-	-	-	0.03	-	-	-	-	0.09
60	-	-	-	0.03	-	-	-	-	0.14
65	-	-	-	-	-	-	-	-	-
70	-	-	-	0.02	-	0.08	-	-	0.21
75	-	-	-	-	-	-	0.04	-	-
80	-	-	-	0.02	-	0.09	0.05	-	0.04
85	-	-	-	0.02	-	0.07	0.04	0.08	0.1

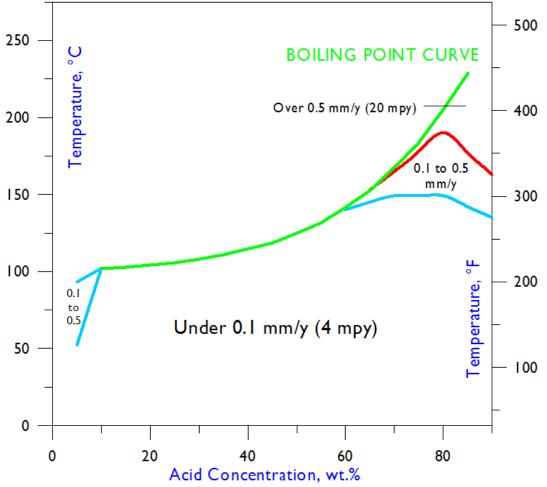
Phosphoric Acid

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Jobs 113-92, 31-94, and 47-97.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for B-3[®]Alloy in Phosphoric Acid

Selected Corrosion Data Continued


Conc.	75°F	100°F	125°F	150°F	175°F	200°F	225°F	250°F	275°F	300°F	350°F	
Wt.%	24°C	38°C	52°C	66°C	79°C	93°C	107°C	121°C	135°C	149°C	177°C	Boiling
1	-	-	-	-	-	-	-	-	-	-	-	-
2	-	0.07	0.09	0.13	0.11	0.1	-	-	-	-	-	0.01
3	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-
5	-	0.07	0.08	0.15	0.13	0.11	-	-	-	-	-	0.01
10	-	0.04	0.08	0.11	0.11	0.11	-	-	-	-	-	0.01
20	-	0.03	-	0.08	-	0.11	-	-	-	-	-	0.02
30	-	0.02	-	0.06	-	0.09	-	-	-	-	-	0.02
40	-	-	-	0.03	-	0.06	-	-	-	-	-	0.02
50	-	-	-	0.03	-	0.04	-	-	-	-	-	0.03
60	-	-	-	0.02	-	0.03	-	-	-	-	-	0.05
70	-	-	-	-	-	0.01	-	0.03	-	0.11	-	0.15
80	-	-	-	-	-	0.01	-	0.03	-	0.08	0.44	4.76
90	-	-	-	-	-	0.02	-	0.05	0.11	0.14	0.76	-
96	-	-	-	-	-	0.02	-	0.09	0.22	0.35	2.59	-

Sulfuric Acid

All corrosion rates are in millimeters per year (mm/y); to convert to mils (thousandths of an inch) per year, divide by 0.0254. Data are from Corrosion Laboratory Jobs 37-92, 29-94, 47-94, 42-95, and 14-96.

All tests were performed in reagent grade acids under laboratory conditions; field tests are encouraged prior to industrial use.

Iso-Corrosion Diagram for B-3[®]Alloy in Sulfuric Acid

Haynes International - HASTELLOY® B-3® alloy

Selected Corrosion Data (Reagent Grade Solutions, mm/y)

	Concentration	100°F	125°F	150°F	175°F	200°F	
Chemical	wt.%	38°C	52°C	66°C	79°C	93°C	Boiling
	10	-	-	-	-	-	0.01
	30	_	_	_	-	_	0.01
Acetic Acid	50	-	-	-	-	-	0.01
	70	-	_	-	-	-	0.01
	99	_	-	-	_	-	0.02
	10	-	-	-	-	-	0.01
	20	-	-	-	-	-	0.02
	30	-	-	-	-	-	0.02
Formic Acid	40	-	-	-	-	-	0.01
	60	-	-	-	-	-	0.01
	89	-	-	-	-	-	0.01
	2.5	0.07	0.11	0.26	-	0.24	0.02
	5	0.1	-	0.27	-	0.25	0.03
Hydrobromic	10	0.15	-	0.29	-	0.28	0.1
Acid	20	0.12	0.19	0.27	-	0.27	0.1
	30	0.1	0.15	0.2	-	0.29	0.29
	40	0.06	0.11	0.16	-	0.25	0.43
	1	0.07	0.11	0.18	-	0.21	0.01
	2	0.1	0.16	0.21	-	0.26	0.04
Hydrochloric	5	0.11	0.19	0.25	-	0.3	0.08
Acid	10	0.13	0.2	0.24	-	0.29	0.13
	15	0.1	0.18	0.23	-	0.28	0.21
	20	0.1	0.15	0.21	-	0.3	0.29
	10	-	-	-	-	-	0.07
	30	-	-	-	-	-	0.07
Dhaanharia	50	-	-	-	-	0.03	0.09
Phosphoric Acid	60	-	-	-	-	0.03	0.14
	70	-	-	-	-	0.02	0.21
	80	-	-	-	-	0.02	0.04
	85	-	-	-	-	0.02	0.1
	10	0.04	0.08	0.11	0.11	0.11	0.01
	20	0.03	-	0.08	-	0.11	0.02
	30	0.02	-	0.06	-	0.09	0.02
	40	-	-	0.03	-	0.06	0.02
Sulfuric Acid	50	-	-	0.03	-	0.04	0.03
	60	-	-	0.02	-	0.03	0.05
	70	-	-	-	-	0.01	0.15
	80	-	-	-	-	0.01	4.76
	90	-	-	-	-	0.02	-
	96	-	-	-	-	0.02	-

Resistance to Stress Corrosion Cracking

One of the chief attributes of the nickel alloys is their resistance to chloride-induced stress corrosion cracking. A common solution for assessing the resistance of materials to this extremely destructive form of attack is boiling 45% magnesium chloride (ASTM Standard G 36), typically with stressed U-bend samples. As is evident from the following results, the three nickel alloys, B-3[®], C-276 and 625, are much more resistant to this form of attack than the comparative, austenitic stainless steels. The tests were stopped after 1,008 hours (six weeks).

Alloy	Time to Cracking				
316L	2 h				
254SMO [®]	24 h				
625	No Cracking in 1,008 h				
C-276	No Cracking in 1,008 h				
B-3®	No Cracking in 1,008 h				

Corrosion Resistance of Welds

To assess the resistance of welds to corrosion, Haynes International has chosen to test all-weld-metal samples, taken from the quadrants of cruciform assemblies, created using multiple gas metal arc (MIG) weld passes. Predictably, the inhomogeneous nature of weld microstructures leads to higher corrosion rates (than with homogeneous, wrought products) in some environments. Nevertheless, HASTELLOY[®] B-3[®] alloy exhibits very high resistance to the key, inorganic acids, even in welded form, as shown in the following table:

	Concentration	Tempe	Temperature		Corro	sion Rate	
				Weld	Metal	Wrought I	Base Metal
Chemical	wt. %	°F	°C	mpy	mm/y	mpy	mm/y
H_2SO_4	30	200	93	3.5	0.09	3.5	0.09
H_2SO_4	50	200	93	5.1	0.13	1.6	0.04
H_2SO_4	70	200	93	1.2	0.03	0.4	0.01
H_2SO_4	90	200	93	1.8	0.02	0.8	0.02
HCI	5	200	93	11.8	0.3	11.8	0.3
HCI	10	200	93	11.4	0.29	11.4	0.29

Physical Properties

Physical Property	Briti	sh Units	Metric	: Units
Density	RT	0.333 lb/in ³	RT	9.22 g/cm ³
	RT	53.8 µohm.in	RT	1.37 µohm.m
	200°F	53.9 µohm.in	100°C	1.37 µohm.m
Electrical	400°F	54.1 µohm.in	200°C	1.37 µohm.m
Electrical Resistivity	600°F	54.3 µohm.in	300°C	1.38 µohm.m
Resistivity	800°F	54.4 µohm.in	400°C	1.38 µohm.m
	1000°F	55.4 µohm.in	500°C	1.40 µohm.m
	1200°F	57.5 µohm.in	600°C	1.43 µohm.m
	RT	78 Btu.in/h.ft ² .°F	RT	11.2 W/m.°C
	200°F	83 Btu.in/h.ft ² .°F	100°C	12.1 W/m.°C
The sum of	400°F	93 Btu.in/h.ft ² .°F	200°C	13.4 W/m.°C
Thermal Conductivity	600°F	104 Btu.in/h.ft ² .°F	300°C	14.8 W/m.°C
Conductivity	800°F	116 Btu.in/h.ft ² .°F	400°C	16.3 W/m.°C
	1000°F	129 Btu.in/h.ft ² .°F	500°C	17.9 W/m.°C
	1200°F	142 Btu.in/h.ft ² .°F	600°C	19.6 W/m.°C
	77-200°F	5.7 μin/in.°F	25-100°C	10.6 µm/m.°C
	77-400°F	6.1 µin/in.°F	25-200°C	11.1 µm/m.°C
Mean Coefficient of	77-600°F	6.3 µin/in.°F	25-300°C	11.4 µm/m.°C
Thermal Expansion	77-800°F	6.5 μin/in.°F	25-400°C	11.6 µm/m.°C
	77-1000°F	6.6 µin/in.°F	25-500°C	11.8 µm/m.°C
	77-1200°F	6.5 μin/in.°F	25-600°C	11.8 µm/m.°C
	RT	0.089 Btu/lb.°F	RT	373 J/kg.°C
	200°F	0.092 Btu/lb.°F	100°C	382 J/kg.°C
	400°F	0.098 Btu/lb.°F	200°C	409 J/kg.°C
Specific Heat	600°F	0.102 Btu/lb.°F	300°C	421 J/kg.°C
	800°F	0.104 Btu/lb.°F	400°C	431 J/kg.°C
	1000°F	0.104 Btu/lb.°F	500°C	436 J/kg.°C
	1200°F	0.112 Btu/lb.°F	600°C	434 J/kg.°C
	RT	31.4 x 10 ⁶ psi	RT	216 GPa
	200°F	30.9 x 10ºpsi	100°C	213 GPa
Dumonia Madulus of	400°F	30.1 x 10 ⁶ psi	200°C	208 GPa
Dynamic Modulus of	600°F	29.3 x 10 ⁶ psi	300°C	202 GPa
Elasticity	800°F	28.3 x 10 ⁶ psi	400°C	197 GPa
	1000°F	27.2 x 10 ⁶ psi	500°C	190 GPa
	1200°F	26.5 x 10 ⁶ psi	600°C	185 GPa
Melting Range	2500-2585°F		1370-1418°C	
RT= Room Temperature				

RT= Room Temperature

Impact Strength

Form	Thickness	/Diameter	Test Tem	perature	Impact S	Strength	Number of Tests
-	in	mm	°F	°C	ft.lbf	J	-
Plate	0.79	20	RT	RT	353	479	3
Plate	0.79	20	-320	-196	334	453	3
Plate	1.38	35	RT	RT	388	526	3
Plate	1.38	35	-320	-196	359	487	3
Bar	1.58	40	RT	RT	388	526	3
Bar	1.58	40	-320	-196	339	460	3
Bar	1.97	50	RT	RT	390	529	3
Bar	1.97	50	-320	-196	338	458	3

*Charpy V-Notch Samples.

RT= Room Temperature

Tensile Strength & Elongation

			Те	st	0.2% (Offset	Ultimate	Tensile	
	Thick	ness	Tempe	rature	Yield St	rength	Strei	ngth	Elongation
Form	in	mm	°F	°C	ksi	MPa	ksi	MPa	%
Sheet	0.125	3.2	RT	RT	61	421	125	862	53
Sheet	0.125	3.2	200	93	55	379	121	834	57
Sheet	0.125	3.2	400	204	47	324	110	758	60
Sheet	0.125	3.2	600	316	44	303	104	717	63
Sheet	0.125	3.2	800	427	42	290	102	703	62
Sheet	0.125	3.2	1000	538	39	269	98	676	59
Sheet	0.125	3.2	1200	649	46	317	104	717	56
Plate	Mult	iple*	RT	RT	58	400	128	883	58
Plate	Mult	iple*	200	93	54	372	122	841	58
Plate	Mult	iple*	400	204	48	331	115	793	61
Plate	Mult	iple*	600	316	44	303	111	765	62
Plate	Mult	iple*	800	427	41	283	108	745	62
Plate	Mult	iple*	1000	538	40	276	106	731	62
Plate	Mult	iple*	1200	649	42	290	107	738	65

*Average values from the testing of 6 lots of plate (of different thicknesses) from three heats. RT= Room Temperature

Hardness

Form	Hardness, HRBW	Typical ASTM Grain Size
Sheet	93	4.5 - 6.5
Plate	95	3.5 - 7
Bar	92	2 - 7.5

All samples tested in solution-annealed condition. HRBW = Hardness Rockwell "B", Tungsten Indentor.

Welding & Fabrication

HASTELLOY[®] B-3[®] alloy is very amenable to the Gas Metal Arc (GMA/MIG), Gas Tungsten Arc (GTA/TIG), and Shielded Metal Arc (SMA/Stick) welding processes. Matching filler metals (i.e. solid wires and coated electrodes) are available for these processes, and welding guidelines are given in our "Welding and Fabrication" brochure.

Wrought products of HASTELLOY[®] B-3[®] alloy are supplied in the Mill Annealed (MA) condition, unless otherwise specified. This solution annealing procedure has been designed to optimize the alloy's corrosion resistance and ductility. Following all hot forming operations, the material should be re-annealed, to restore optimum properties. In the case of cold-formed components of B-3[®] alloy, solution annealing should be performed prior to subsequent fabrication/welding when cold work is greater than about 7%. Otherwise, B-3[®] alloy is very susceptible to cracking in the welded region during subsequent fabrication/ welding. The cracking may not become obvious until the component has been put into service. Care should also be taken to utilize well-controlled furnace annealing conditions: fast heat-up rate, precise temperature control, and rapid cooling.

The annealing temperature for HASTELLOY[®] B-3[®] alloy is 1066°C (1950°F), and water quenching is advised (rapid air cooling is feasible with structures thinner than 10 mm (0.375 in). A hold time at the annealing temperature of 10 to 30 minutes is recommended, depending on the thickness of the structure (thicker structures need the full 30 minutes). More details concerning the heat treatment of HASTELLOY[®] B-3[®] alloy are given in our "Welding and Fabrication" brochure.

HASTELLOY[®] B-3[®] alloy can be hot forged, hot rolled, hot upset, hot extruded, and hot formed. However, it is more sensitive to strain and strain rates than the austenitic stainless steels, and the hot working temperature range is quite narrow. For example, the recommended start temperature for hot forging is 1232°C (2250°F) and the recommended finish temperature is 982°C (1800°F). Moderate reductions and frequent re-heating provide the best results, as described in our "Welding and Fabrication" brochure. This reference also provides guidelines for cold forming, spinning, drop hammering, punching, and shearing. The alloy is stiffer than most austenitic stainless steels, and more energy is required during cold forming. Also, HASTELLOY[®] B-3[®] alloy work hardens more readily than most austenitic stainless steels, and may require several stages of cold work, with intermediate anneals.

While cold work does not usually affect the resistance of HASTELLOY[®] B-3[®] alloy to general corrosion, it can affect resistance to stress corrosion cracking. For optimum corrosion performance, therefore, the re-annealing of cold worked parts (following an outer fiber elongation of 7% or more) is important.

Specifications & Codes

Specifications			
HASTELLOY® B-3® alloy			
(N10675, W80675)			
Sheet, Plate & Strip	SB 333/B 333		
	P=44		
	SB 335/B 335		
Billet, Rod & Bar	B472		
	P= 44		
	SFA 5.11/A 5.11 (ENiMo-10)		
Coated Electrodes	DIN 2.4696 (EL-NiMo28Cr)		
	F= 44		
Bare Welding Rods & Wire	SFA 5.14/ A 5.14 (ERNiMo-10)		
	DIN 2.4695 (SG-NiMo30Cr)		
	F= 44		
Seamless Pipe & Tube	SB 622/B 622		
	P= 44		
Welded Pipe & Tube	SB 619/B 619		
	SB 626/B 626		
	P= 44		
	SB 366/B 366		
Fittings	SB 462/B 462		
	P= 44		
	SB 564/B 564		
Forgings	SB 462/B 462		
	P= 44		
DIN	17744 No. 2.4600 NiMo29Cr		
TÜV	Werkstoffblatt 517		
	Kennblatt 7615		
	Kennblatt 7616		
	Kennblatt 7617		
Others	-		

Codes			
HASTELLOY [®] B-3 [®] alloy			
(N10675, W80675)			
	Section I	-	
ASME -	Section III	Class 1	-
		Class 2	-
		Class 3	800°F (427°C) ²
	Section VIII	Div. 1	800°F (427°C) ¹
		Div. 2	-
	Sections XII	650°F (343°C)⁴	
	B16.5	800°F (427°C) ⁶	
		Blt	
	B16.34	800°F (427°C)⁵	
	B31.1	-	
	B31.3	800°F (427°C) ³	
VdT	ÜV (doc #)	752°F (400°C) ⁷ , #517	

¹Approved material forms: Plate, Sheet, Bar, Forgings, fittings, welded pipe/tube, seamless pipe/tube
²Approved material forms: Plate, Sheet, Bar, Forgings, welded pipe/tube, seamless pipe/tube
³Approved material forms: Plate, Sheet, Bar, fittings, welded pipe/tube, seamless pipe/tube
⁴Approved material forms: Plate, Sheet, Bar, Forgings, fittings, welded pipe/tube
⁵Approved material forms: Plate, Bar, Forgings, seamless pipe/tube, Bolting
⁶Approved material forms: Plate, Sheet, Bar, Forgings, Bolting
⁷Approved material forms: Plate, Sheet, Bar, Forgings

Disclaimer:

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data in this document but makes no representations or warranties as to the data's accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums. It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc., unless otherwise indicated.