Principal Features

Haynes International, Inc. is pleased to announce the development of HAYNES® HR-224® alloy, a new alloy with excellent oxidation resistance and improved fabricability and weldability compared to HAYNES® 214® alloy. This Ni–27.5Fe–20Cr–3.8Al alloy achieves superior oxidation resistance through the formation of a tightly adherent alumina protective scale. It exhibits excellent ductility and formability characteristics, with weldability on par with nickel-iron-chromium alloys of substantially lower aluminum contents. Potential uses include applications in heat recuperators, automotive catalytic converters and heat shields, strand annealing furnace tubulars, and other severely oxidizing environments.

*Please contact our technical support team if you have technical questions about this alloy.

Nominal Composition

Weight %
Nickel 47 Balance
Cobalt 2 max.
Iron 27.5
Chromium 20
Molybdenum 0.5 max.
Tungsten 0.5 max.
Manganese 0.5 max.
Silicon 0.3
Columbium 0.15 max.
Aluminum 3.8
Titanium 0.3
Carbon 0.05
Boron 0.004 max.
Zirconium 0.025 max.

Oxidation Resistance

Comparative Oxidation Resistance in Flowing Air

Material 1600°F (871°C) 1800°F (982°C)
Average Metal Loss Average Metal Affected Average Metal Loss Average Metal Affected
Mils μm Mils μm Mils μm Mils μm
HR-224® 0 0 0.2 5 0 0 0.3 8
214® 0 0 0.3 8 0 0 0.5 13
230® 0 0 0.9 23 0.2 5 1.6 41
625 0.1 3 0.6 15 0.2 5 1.9 48
X 0.1 3 1 25 0.3 8 1.9 48
HR-120® 0.1 3 1.1 28 0.3 8 2.0 51
601 - - - - 0.4 10 1.7 43
800HT 0.1 3 1 25 0.5 13 4.1 104
347 SS 0.3 8 0.7 18 - - - -
253 MA 0.2 5 0.9 23 1.3 33 3.0 76

Flowing air at a velocity of 7.0 ft/min (213.4 cm/min) past the samples. Samples cycled to room temperature once per week.

Comparative Long-Term Oxidation Resistance

Material 1800°F (982°C)
Average Metal Loss Average Metal Affected
Mils μm Mils μm
HR-224® 0.1 3 0.1 3
214® 0.1 3 0.5 13
230® 0.1 3 2.7 69
X 0.2 5 2.8 71
HR-120® 0.5 13 3.3 84
625 2.6 66 8.6 218

Alloys exposed for 360 days (8,640 h) in flowing air, cycled once per month.

Comparative Oxidation Resistance in Water Vapor

Material 1400°F (760°C) 1600°F (871°C)
Average Metal Loss Average Metal Affected Average Metal Loss Average Metal Affected
Mils μm Mils μm Mils μm Mils μm
HR-224® 0.05 1 0.25 7 0.06 2 0.26 7
214® 0.02 1 0.22 7 0.05 1 0.35 9
230® 0.09 2 1.19 30 0.21 5 1.91 49
HR-120® 0.12 3 0.72 18 0.26 7 2.06 52

Amount of metal affected for high‐temperature sheet (0.125”) alloys exposed for 8640h (cycled monthly) in air + 10%H2O

Comparative Cyclic Oxidation

Material 1400°F (760°C) 1600°F (871°C) 1800°F (982°C) 2000°F (1093°C)
Average Metal Loss Average Metal Affected Average Metal Loss Average Metal Affected Average Metal Loss Average Metal Affected Average Metal Loss Average Metal Affected
Mils μm Mils μm Mils μm Mils μm Mils μm Mils μm Mils μm Mils μm
HR-224® < 0.1 0.6 0.1 1.9 0.1 3 0.3 8 0.1 3 0.3 8 0.2 5 0.8 20
214® < 0.1 0.3 0.1 1.6 0.1 3 0.1 3 0.1 3 0.5 13 0.1 6 0.4 10
230® < 0.1 0.8 0.1 2.7 0.1 3 0.7 18 0.2 5 1.1 28 0.9 23 4.1 104
X - - - - 0.2 5 1.0 25 0.3 8 1.6 41 10 254 12.1 307
601 - - - - - - - - 0.5 13 1.9 48 - - - -
625 - - - - 0.1 3 0.5 13 0.4 10 2.0 51 - - - -
HR-120® < 0.1 1.2 0.2 6.0 0.2 5 0.9 23 0.4 10 2.0 51 18.5 470 20.6 523
600 - - - - 0.1 3 0.8 20 0.5 13 2.2 56 - - - -
800HT - - - - 0.3 8 1.3 33 8 203 9.8 249 30.8 782 32.2 818

Amount of metal affected for alloys exposed to flowing air for 1000-h, cycled 1x/10h

Schematic Representation of Metallographic Technique used for Evaluating Oxidation

Carburization Resistance

Laboratory Carburization Testing in Ar-5%H2-2%C3H6 at 1600°F (871°C) for 124 hours

Alloy Carbon Absorption Total Depth of Attack
(mg/cm2)
mil mm
214® 0.4 0 0
HR-160® 0.9 10.3 0.26
HR-224® 1.4 5.8 0.15
625 2.6 10 0.25
X 3.6 11.2 0.28
HR-120® 4 14.3 0.36

Note: Preliminary data from a single test.

Laboratory Carburization Testing in Ar-5%H2-2%C3H6 at 2000°F (1093°C) for 24 hours

Alloy Carbon Absorption Total Depth of Attack
(mg/cm2)
mil mm
214® 0.2 0 0
HR-224® 3.7 35.7 0.9
HR-160® 7.1 45.6 1.2
625 8.9 > 61.3 > 1.6
X 11.7 41.9 1.1
HR-120® 13.6 > 61.9 > 1.6

Note: Preliminary data from a single test. 625 and HR-120® exhibited through-thickness carburization attack.

Thermal Stability

Room Temperature Properties after Exposure

Exposure Temperature Time 0.2% Offset Yield Strength Ultimate Tensile Strength % Elongation
°F °C h ksi MPa ksi MPa
As-Annealed As-Annealed 0 46 318 108 745 50
1200 649 4000 102 703 153 1055 21
8000 103 709 148 1020 12
16000 102 703 144 992 10
1400 760 4000 61 420 130 896 25
8000 58 402 127 879 20
16000 55 379 123 848 21
1600 871 4000 39 269 104 717 39
8000 40 276 104 717 40
16000 38 262 104 717 41
1800 982 4000 44 303 100 690 46
8000 44 303 93 639 43
16000 42 290 94 648 50

Creep-Rupture Strength

Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 hours 100 hours 1000 hours 10,000 hours
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 0.1 36.9 254 26.8 185 19.6 135 14.5 100
1.0 59.7 412 39.1 270 26.1 180 17.7 122
R 82.8 571 18.3 126 29.1 201 18.0 124
1300 704 0.1 19.1 132 13.9 96 10.2 70 7.6 52
1.0 29.0 200 19.2 132 12.9 89 8.9 61
R 43.4 299 25.5 176 15.5 107 9.7 67
1400 760 0.1 10.3 71 7.5 52 5.6 39 4.2 29
1.0 14.9 103 9.9 68 6.8 47 4.8 33
R 23.7 163 14.1 97 8.7 60 5.5 38
1500 816 0.1 5.8 40 4.3 30 3.2 22 2.4 17
1.0 8.1 56 5.5 38 3.8 26 2.7 19
R 13.5 93 8.1 56 5.1 35 3.3 23
1600 871 0.1 3.4 23 2.5 17 1.9 13 1.5 10
1.0 4.6 32 3.2 22 2.3 16 1.7 12
R 8.0 55 4.9 34 3.2 22 2.1 14
1700 927 0.1 2.1 14 1.6 11 1.2 8 0.9 6
1.0 2.8 19 2.0 14 1.4 10 1.1 8
R 5.0 34 3.1 21 2.1 14 1.4 10
1800 982 0.1 1.3 9 1.0 7 0.8 6 0.6 4
1.0 1.8 12 1.3 9 1.0 7 0.8 6
R 3.2 22 2.1 14 1.4 10 1.0 7
1900 1038 0.1 0.9 6 0.7 5 0.5 3 0.4 3
1.0 1.2 8 0.9 6 0.7 5 0.6 4
R 2.2 15 1.4 10 1.0 7 0.8 6
2000 1093 0.1 0.6 4 0.5 3 0.4 3 0.3 2
1.0 0.8 6 0.7 5 0.5 3 0.4 3
R 1.5 10 1.1 8 0.8 6 0.6 4

R = Rupture

Resistance to Strain Age Cracking

The Controlled Heating-Rate Tensile (CHRT) test is an excellent measure of the resistance of gamma-prime forming superalloys to strain-age cracking. Samples of thickness 0.063” (1.6 mm), originally in the solution annealed condition, are heated to the test temperature at a rate of 25-30°F (14-17°C) per minute, this being representative of a typical post-weld heat treatment. In this case, tests were performed at 1450°F (788°C). The susceptibility to strain-age cracking is related to the minimum tensile elongation observed within that temperature range (the higher the minimum elongation, the greater is the resistance to strain-age cracking).

HAYNES® HR-224® Strain-Age Cracking Resistance

Alloy CHRT Elongation (%)*
HAYNES® HR-224® 16**
HAYNES® 214® 12
HAYNES®282® 16
HAYNES® 718 15
HAYNES® R-41 7

*Average of three tests.
**Average of two heats
Controlled Heating Rate Test – 100°F/sec to 1100°F – 30°F/minute to 1450°F – Hold 1450°F and pull to failure at 0.0625 inches/minute

Metzler, D.A. 2008. A Gleeble®-based Method for Ranking the Strain-Age Cracking Susceptibility of Ni-Based Superalloys, Welding Journal 87(10): 249-s to 256-s.

Physical Properties

Physical Property British Units Metric Units
Density RT
0.280 lb/in3
RT
7.72 g/cm3
Melting Temperature 2450-2510°F - 1340-1380°C -
Electrical Resistivity RT 48.6 µohm-in RT 123.5 µohm-cm
200°F 49.0 µohm-in 100°C 125.2 µohm-cm
400°F 50.2 µohm-in 200°C 127.5 µohm-cm
600°F 51.1 µohm-in 300°C 130.0 µohm-cm
800°F 52.0 µohm-in 400°C 131.7 µohm-cm
1000°F 52.6 µohm-in 500°C 133.5 µohm-cm
1200°F 52.8 µohm-in 600°C 134.0 µohm-cm
1400°F 52.9 µohm-in 700°C 134.2 µohm-cm
1600°F 53.0 µohm-in 800°C 134.5 µohm-cm
1700°F 53.0 µohm-in 900°C 134.4 µohm-cm
- - 1000°C 135.4 µohm-cm
Thermal Diffusivity RT
4.3 x 10-3in2/sec
RT
27.5 x 10-3cm2/s
200°F
4.5 x 10-3in2/sec
100°C
29.5 x 10-3cm2/s
400°F
5.0 x 10-3in2/sec
200°C
32.1 x 10-3cm2/s
600°F
5.4 x 10-3in2/sec
300°C
34.5 x 10-3cm2/s
800°F
5.8 x 10-3in2/sec
400°C
37.2 x 10-3cm2/s
1000°F
6.3 x 10-3in2/sec
500°C
39.4 x 10-3cm2/s
1200°F
6.7 x 10-3in2/sec
600°C
42.0 x 10-3cm2/s
1400°F
7.0 x 10-3in2/sec
700°C
44.7 x 10-3cm2/s
1600°F
7.0 x 10-3in2/sec
800°C
44.9 x 10-3cm2/s
1700°F
7.1 x 10-3in2/sec
900°C
45.0 x 10-3cm2/s
- - 1000°C
47.4 x 10-3cm2/s
Thermal Conductivity RT
69 Btu-in/ft2-hr-°F
RT 10.0 W/m-°C
200°F
74 Btu-in/ft2-hr-°F
100°C 11.2 W/m-°C
400°F
89 Btu-in/ft2-hr-°F
200°C 12.7 W/m-°C
600°F
100 Btu-in/ft2-hr-°F
300°C 14.2 W/m-°C
800°F
112 Btu-in/ft2-hr-°F
400°C 15.7 W/m-°C
1000°F
123 Btu-in/ft2-hr-°F
500°C 17.1 W/m-°C
1200°F
135 Btu-in/ft2-hr-°F
600°C 18.7 W/m-°C
1400°F
142 Btu-in/ft2-hr-°F
700°C 20.3 W/m-°C
1600°F
149 Btu-in/ft2-hr-°F
800°C 20.7 W/m-°C
1700°F
149 Btu-in/ft2-hr-°F
900°C 21.1 W/m-°C
- - 1000°C 22.6 W/m-°C
Specific Heat RT 0.112 Btu/lb-°F RT 471 J/kg·°C
200°F 0.117 Btu/lb-°F 100°C 492 J/kg·°C
400°F 0.123 Btu/lb-°F 200°C 514 J/kg·°C
600°F 0.128 Btu/lb-°F 300°C 532 J/kg·°C
800°F 0.132 Btu/lb-°F 400°C 548 J/kg·°C
1000°F 0.136 Btu/lb-°F 500°C 564 J/kg·°C
1200°F 0.139 Btu/lb-°F 600°C 577 J/kg·°C
1400°F 0.142 Btu/lb-°F 700°C 588 J/kg·°C
1600°F 0.145 Btu/lb-°F 800°C 600 J/kg·°C
1700°F 0.146 Btu/lb-°F 900°C 608 J/kg·°C
- - 1000°C 616 J/kg·°C
Mean Coefficient of Thermal Expansion 70-200°F 7.8 µin/in -°F 25-100°C
14.0 x 10-6m/m·°C
70-400°F 8.1 µin/in -°F 25-200°C
14.5 x 10-6m/m·°C
70-600°F 8.2 µin/in -°F 25-300°C
14.8 x 10-6m/m·°C
70-800°F 8.3 µin/in -°F 25-400°C
14.9 x 10-6m/m·°C
70-1000°F 8.3 µin/in -°F 25-500°C
14.9 x 10-6m/m·°C
70-1200°F 8.3 µin/in -°F 25-600°C
14.8 x 10-6m/m·°C
70-1400°F 8.9 µin/in -°F 25-700°C
15.3 x 10-6m/m·°C
70-1600°F 9.4 µin/in -°F 25-800°C
16.5 x 10-6m/m·°C
70-1700°F 9.7 µin/in -°F 25-900°C
17.2 x 10-6m/m·°C
- - 25-1000°C
18.2 x 10-6m/m·°C
Dynamic Modulus of Elasticity RT
28.5 x 106psi
RT 197 GPa
200°F
27.5 x 106psi
100°C 191 GPa
400°F
27.0 x 106psi
200°C 186 GPa
600°F
26.2 x 106psi
300°C 181 GPa
800°F
25.3 x 106psi
400°C 176 GPa
1000°F
24.5 x 106psi
500°C 170 GPa
1200°F
23.5 x 106psi
600°C 164 GPa
1400°F
22.0 x 106psi
700°C 158 GPa
1600°F
21.3 x 106psi
800°C 152 GPa
1800°F
20.2 x 106psi
900°C 146 GPa
- - 1000°C 139 GPa

Tensile Properties

HAYNES® HR-224® Tensile Properties – Sheet

Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 47.6 328 106.1 732 47
1000 538 42.7 295 95.3 657 57
1200 649 56.2 387 84.3 581 16
1400 760 57.9 399 68.5 472 14
1600 871 14.3 99 18.3 126 102
1800 982 6.9 48 9.2 64 105

HAYNES® HR-224® Tensile Properties – Plate

Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 45.9 316 105.6 728 49
1000 538 42.2 291 93.6 645 57
1200 649 55.2 381 78.6 542 14
1400 760 59.5 410 69.6 480 9
1600 871 15.6 108 21.7 150 105
1800 982 5.8 40 9.5 66 125

HAYNES® HR-224® Tensile Properties – Bar

Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
RT RT 45.8 316 106.5 734 48 72
1000 538 43.0 296 93.4 644 53 61
1200 649 54.8 378 74.5 514 13 22
1400 760 57.5 396 69.6 480 11 12
1600 871 12.9 89 19.5 135 106 93
1800 982 6.3 43 9.8 67 101 95

Annealing Response After Cold Forming

Effect of Cold Reduction on Room Temperature Tensile Properties*

Percentage Cold Reduction Subsequent Anneal Temperature Ultimate Tensile Strength 0.2% Offset Yield Strength Elongation Hardness
% - ksi MPa ksi MPa % Rb
0 - 107.0 738 51.0 352 47 87
10 1900°F (1038°C) for 5 min 100.7 694 51.9 358 45.6 86
20 20 103.9 716 58.3 402 43.1
30 30 106.1 732 55.5 383 41.2
40 40 105.2 725 45.4 313 45.4
50 50 110.2 760 48.6 335 45.0
10 2000°F (1093°C) for 5 min 97.3 671 48.2 332 48.5 90
20 98.4 678 51.0 352 47.5 89
30 100.9 696 41.7 288 47.8 88
40 103.6 714 42.8 295 47.1 86
50 107.4 741 46.2 319 44.2 91

*Based upon rolling reductions taken upon 0.120-inch (3.0mm) thick mill annealed sheet

Heat Treatment

HAYNES® HR-224® alloy is furnished in the solution heat-treated condition, unless otherwise specified.  The alloy is normally final solution heat-treated at 2025 to 2075°F (1107 to 1135°C) for a time commensurate with section thickness and rapidly cooled or water-quenched for optimal properties.

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Download