Principal Features

Resistance to High-Temperature Corrosion

HAYNES® HR-160® alloy (UNS N12160) alloy is a solid-solution-strengthened nickel-cobalt-chromium-silicon alloy with outstanding resistance to various forms of high-temperature corrosion attack. HR-160® alloy has excellent resistance to sulfidation and chloride attack in both reducing and oxidizing atmospheres. The alloy also has exceptionally good resistance to oxidation, hot corrosion, carburization, metal dusting, nitridation, and corrosion attack by low melting point compounds such as those formed by phosphorus, vanadium, and other impurities. The alloy is especially suited for applications in high temperature corrosive environments generated by combustion of low grade fuels or processing of chemical feed stocks with corrosive contaminants such as sulfur, chlorine, fluorine, vanadium, phosphorus, and others. The alloy is capable of withstanding temperatures up to 2200°F (1204°C).

Ease of Fabrication

HAYNES® HR-160® alloy has excellent forming and welding characteristics. It may be forged or otherwise hot-worked, providing it is held at 2050°F (1121°C) for time sufficient to bring the entire piece to temperature. As a consequence of its good ductility, HR-160® alloy is also readily formed by cold working. Cold- or hot-worked parts should be annealed and rapidly cooled in order to restore the best balance of properties. HR-160® alloy can be welded by a variety of techniques, including gas tungsten arc (TIG), gas metal arc (MIG), and resistance welding.

Heat Treatment

HR-160® alloy is furnished in the solution annealed condition, unless otherwise specified. The alloy is solution annealed at 2050°F (1121°C) and rapidly cooled for optimum properties. Intermediate annealing, if required during fabrication and forming operations, can be performed at temperatures as low as 1950°F (1066°C).HR-160® alloy is furnished in the solution-annealed condition, unless otherwise specified. The alloy is solution annealed at 2050°F (1121°C) and rapidly cooled for optimum properties. Intermediate annealing, if required during fabrication and forming operations, can be performed at temperatures as low as 1950°F (1066°C).

ASME Vessel Code

HR-160® is covered in ASME Section VIII Division 1 for construction up to 1500°F (815°C). Code Case 2385 covers HR-160® for construction up to 1800°F (982°C). The thickness of the plate at welded joints is limited to 0.50 inches.

Applications

HAYNES® HR-160® alloy combines properties which make it highly useful for service in severe high-temperature corrosive environments. Applications include a variety of fabricated components in municipal, industrial, hazardous, and nuclear waste incinerators. It is widely used in recuperators, heat exchangers and waste heat recovery systems. HR-160® alloy is also suitable for utility boilers, sulfur plants, high-temperature furnaces, kilns, calciners, resource recovery units, cement kilns, pulp and paper recovery boilers, coal gasification systems, and fluidized-bed combustion systems.

Cross-section of HR-160® flue-gas stack Rosemount Annubar averaging pitot tube for waste incineration and chemical process industries

Lining (inner cylinder) of exhaust ducting in pulp and paper recovery boiler made from HR-160® alloy. Outer shell is carbon steel.

Many waste incineration and chemical process facilities have used HR-160® thermocouple protection tubes with outstanding success. Life extensions greater than 10X compared to Ni-Cr alloys and stainless steels are common.

HR-160® tube shields are considered the premier superheater tube shield material for municipal and industrial waste incineration systems. The use of HR-160® alloy has resulted in greatly improved life in municipal waste incinerators where high-temperature corrosion and fly ash erosion are major considerations.

*Please contact our technical support team if you have technical questions about this alloy.

Nominal Composition

Weight%
Cobalt 29
Chromium 28
Iron 2 max.
Silicon 2.75
Manganese 0.5
Titanium 0.5
Carbon 0.05
Tungsten 1 max.
Molybdenum 1 max.
Niobium* 1 max.
Aluminum 0.4 max

*Also known as Columbium

High temperature Corrosion Resistance

Sulfidation in Reducing Atmospheres

Ar – 5%H2 – 5%CO – 1%CO2 – 0.15%H2S (Vol. %) (PO2 = 3 x 10-19 atm, PS2 = 0.9 x 10-6 atm)

1600°F (871°C)/500 hours
Alloy Cobalt Metal Loss Max. Depth of Attack Average Depth of Attack
- % mils mm mils mm mils mm
6B 57 0.3 0.008 3.1 0.08 3.3 0.08
HR-160® 30 0.2 0.005 5.2 0.13 5.7 0.14
25 51 4.1 0.10 8.4 0.21 14.6 0.37
188 39 7.6 0.10 14.9 0.38 23.6 0.60
150 50 10.3 0.26 22.1 0.56 28.3 0.72
556® 18 20.6 0.52 31.9 0.81 35.6 0.90

Sulfidation in Reducing Atmospheres

H2-46%CO-0.8%CO-1.7%HS Total Depth Attack
Alloy 1100°F (593°C) 1300°F (704°C)
- mpy mm/y mpy mm/y
HR-160® 14.4 0.37 27.3 0.70
6B 23.6 0.60 264.4 6.72
150 37.7 0.96 108.8 2.76
25 94.1 2.39 188.5 4.79
188 150.5 3.82 292.6 7.43
556® 121.1 3.08 345.8 8.78

Sulfate-Induced Sulfidation in Combustion Atmospheres

Laboratory Hot Corrosion Burner Rig Testing – Specimens were exposed to a combustion stream generated in a burner rig fired with No. 2 fuel oil with a constant injection of 50 ppm (by weight) salt (mostly sodium chloride) into the combustion stream. Specimens were also subjected to thermal cycling by cycling them out of the test chamber once every hour and rapid fan cooling to less than 390°F (199°C) for two minutes.

Oxidation Resistance

Oxidation in Air

Laboratory tests were conducted in flowing air at 1800 to 2200°F (982 to 1204°C) for 1008 hours, with specimens cycled to room temperature once every 168 hours.

Alloy 1800°F (982°C) 1800°F (982°C) 1800°F (982°C) 1800°F (982°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils μm mils μm mils μm mils μm mils μm mils μm mils μm mils μm
HR-160® 0.7 18 5.5 140 1.7 43 10.3 262 2.5 64 16.0 406 3.6 91 22.0 559
800HT 0.0 0 4.1 104 7.6 193 11.6 295 11.0 279 15.0 381 19.4 493 >58 >1473
253MA 1.3 33 3.0 76 0.7 18 8.2 208 8.7 221 16.5 419 18.6 472 29.2 742
RA85H 0.5 13 8.2 208 2.9 74 25.9 658 3.7 94 >59 >1499 3.9 99 >59 >1499

Long-Term Oxidation in Air

Laboratory tests were conducted at 2000°F (1093°C) in still air (box furnace), with specimens being cycled to room temperature once every 30 days.

Alloy 1800°F (982°C) 1800°F (982°C) 1800°F (982°C) 1800°F (982°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils μm mils μm mils μm mils μm mils μm mils μm mils μm mils μm
HR-160® 2.5 64 16.7 424 3.6 91 29.0 737 7.6 193 58.7 1491 16.7 4204 26.3 668
601 0.5 13 22.4 569 5.4 137 45.1 1146 12.6 320 72.8 1849 27.3 693 38.9 988
RA85H 6.3 160 53.7 1364 17.9 455 80.3 2040 20.0 508 94.8 2408 >251.7 >6393 >251.7 >6393
800HT 20.7 526 79.8 2027 44.3 1125 51.0 1295 65.2 1656 70.3 1786 >249.9 >6373 >249.9 >6373

Plate exposed for 360 days ( 8,640 hours) in still air, except for 1800°F test, which was exposed for 720 days (17,280 hours).  Cycled once per month.

Alloy 1800°F (982°C) 1800°F (982°C) 1800°F (982°C) 1800°F (982°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils μm mils μm mils μm mils μm mils μm mils μm mils μm mils μm
HR-160® 1.2 30 12.0 305 2.7 69 27.9 709 5.3 135 44.6 1133 8.9 226 >250.0 >6350
601 0.0 0 2.6 66 3.4 86 10.5 267 5.3 135 14.6 371 10.3 262 23.9 607
RA85H 0.7 18 14.6 371 8.9 226 14.3 363 6.4 163 >250.0 >6350 8.4 213 >250.0 >6350
800HT 4.6 117 14.1 358 22.2 564 27.9 709 43.9 1115 48.9 1242 65.6 1666 >250.0 >6350

Plate exposed for 360 days ( 8,640 hours) in still air.  Cycled once every two months.

Metallographic Technique used for Evaluating Environmental Tests

Chloridation Resistance

High-temperature Chloride Vapor Corrosion

Ar-20%O2-2%H2O-0.05%NaCl (Vol.%) 1830°F (999°C) for 75 hours

Alloy Total Depth Of Attack
mils mm
214® 11.5 0.29
HR 160® 12.0 0.31
800H >62.0 (complete penetration)

Exposure to Chloride Vapors at 1600°F (871°C)

Chlorination Resistance

Carburization Resistance

Laboratory pack carburization testing in graphite at 1800°F (982°C) for 500 hours

Alloy Carbon Absorption Total Depth Of Attack
(mg/cm2)
mils mm
HR-120® 0.0 0 -
556® 0.0 0 -
HR 160® 0.3 0 -
800HT 0.3 0.9 0.02
601 1.0 0.46 18.0
RA330 1.9 1.79 70.6
310SS 7.7 2.14 84.2
253 MA 11.6 2.34 92.1

Exposure to Carbon Bed at 1650°F (899°C)

Ar-5%H-1%CH (Vol.%) 1800ºF (982ºC) for 55 hours

Alloy Carbon Absorption (mg/cm)
HR-160® 2.9 
601 3.2
 800H 3.6
600 7.3
HR-120® 7.9
556® 7.9
RA330 9.2
253 MA 9.4
310 SS 10.0

Nitridation Resistance

HAYNES® HR-160® alloy is also very resistant to nitridation attack. Tests were performed in flowing ammonia or nitrogen at various temperatures for 168 hours. Nitrogen absorption was determined by chemical analysis of samples before and after exposure and knowledge of the exposed specimen area.

Ammonia (NH3) 168 hours. Nitrogen Absorption (mg/cm2)

Alloy  1200°F (649°C)  1800°F (982°C)  2000°F (1093°C) 
HR-160®  0.9  2.2  3.0
601 1.1  1.2  2.6
RA330  4.7  3.9  3.1 
800H 4.3  4.0  5.5
304 SS  9.8  7.3  3.5
316 SS 6.9  6.0  3.3 
310 SS  7.4  7.7  9.5 
446 SS  28.8  12.9  4.5 
253 MA  3.3  6.3 

Nitrogen (N2) 2000°F (1093°C), 168 hours

Alloy 
Nitrogen Absoption (mg/cm2
HR-160®  3.9 
601  7.2 
RA330  6.6 
RA85H 8.5 
253 MA 10.0 
800H 10.3 
800HT  11.4 
310 SS  12.3 

Waste Incineration Environments

Incineration of municipal, industrial and hazardous wastes generates very corrosive environments which typically contain such corrosive constituents as SO2, HCl and sometimes HF, along with vapors/deposits of chlorides and sulfates. The following examples demonstrate the relative improvements resulting from upgrading to HR-160® alloy.

Tensile Properties

Tensile Data (plate)*

Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
70 21 45.6 314 111.2 767 68 73
200 93 40.4 279 104.0 717 69 74
400 204 33.8 233 97.9 675 71 74
600 316 27.6 190 91.9 634 74 70
800 427 26.0 179 87.7 605 76 68
1000 538 25.5 176 81.8 564 76 69
1200 649 25.7 177 75.8 523 70 67
1400 760 24.7 170 62.1 428 73 64
1600 871 22.1 152 38.3 264 85 84
1800 982 10.8 74 20.4 140 90 98
2000 1093 5.0 34 10.8 74 88 98
2100 1149 2.3 16 6.0 41 113 94
2200 1204 1.6 11 4.4 30 110 94

*Hot-Rolled and Solution-annealed

Tensile Data (Sheet)*

Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
70 21 51.2 353 110.0 758 63
1000 538 32.7 225 82.5 569 73
1200 649 31.2 215 75.3 519 62
1400 760 30.7 212 61.1 421 47
1600 871 15.9 110 34.9 241 41
1800 982 9.5 66 18.7 129 51
2000 1093 4.7 32 9.8 68 53
2100 1149 2.8 19 6.6 46 107
2200 1204 2.0 14 4.8 33 91

*Solution-annealed

Creep and Stress Rupture Strengths

Plate- 2050°F  (1121°C) Solution-anneal

Test Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
100 h 10,000 h 100 h 10,000 h
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1100 593 1.0 29.4 203 20.4 141 14.4* 100 - -
- - Rupture 45.5 315 32.2 223 22.9 158 16.3 133
1200 649 1.0 18.9 131 12.1 91 9.3* 64 - -
- - Rupture 32.2 223 22.4 154 15.6 108 11.0 76
1300 704 1.0 12.5 86 8.7 60 6.2* 43 - -
- - Rupture 22.9 158 15.7 108 10.8 75 7.4 51
1400 760 1.0 8.5 59 6.0 41 4.2* 29 - -
- - Rupture 16.4 113 11.0 76 7.4 51 5.0 34
1500 816 1.0 5.9 41 4.1 28 2.9* 20 - -
- - Rupture 11.7 81 7.7 53 5.1 35 3.4 23
1600 871 1.0 4.2 29 2.9 20 2.1* 14 - -
- - Rupture 8.4 58 5.5 38 3.6 25 2.4 17
1700 927 1.0 3.0 21 2.1 14 1.5* 10 - -
- - Rupture 6.1 42 3.9 27 2.5 17 1.6 11
1800 982 1.0 2.2 15 1.5 10 1.1* 8 - -
- - Rupture 4.4 30 2.8 19 1.8 12 1.2 8

*Extrapolation

Sheet, Solution-annealed

Temperature Creep Approximate Initial Stress to Produce Specified Creep in
100 Hours 100 Hours
°F °C % ksi MPa ksi MPa
1200 649 0.5 16 110 12.5 86
1 18.5 128 15 103
R 28 193 20 138
1300† 704 0.5 11.5 79 9.2 63
1 13.9 96 10.8 74
R 19 131 14.5 100
1400 760 0.5 8.5 59 6.8* 47*
1 9.9 68 8.2* 57*
R 13 90 9.9 68
1500 816 0.5 6.2 43 4.9* 34*
1 8.2 57 6.0* 41*
R 9.6 66 7.9 54
1600 871 0.5 4.7 32 3.4* 23*
1 5.2 36 4.3* 30*
R 6.8 47 5.1 35
1700 927 0.5 3.2 22 2.1* 14*
1 3.6 25 2.7* 19*
R 4.6 32 3.2 22
1800 982 0.5 2.1 14 1.2 8.3
1 2.7 19 1.6 11
R 3.5 24 2.6 18

*Significant extrapolation
† Values obtained using Larson-Miller interpolation

Comparative Stress-Rupture Strengths

Test Temperature 10,000 Hour Rupture Strengths (ksi*)
°F °C HR-160® RA333® 800HT RA330® 253 MA RA85H 309 310
1200 649 15.6 16.5 17.5 11.0 14.0 12.0 16.0 9.3
1300 704 10.8 12.0 11.0 - 8.5 - - -
1400 760 7.4 9.2 7.3 4.3 5.2 5.0 5.45 3.9
1500 816 5.1 5.7 5.2 - 3.75 - - -
1600 871 3.6 3.1 3.5 1.7 2.5 2.1 1.86 1.65
1700 927 2.5 1.8 1.9 - 1.65 - - -
1800 982 1.8 1.05 1.2 0.63 1.15 0.9 0.63 0.69

 

*ksi can be converted to MPa (megapascals) by multiplying 6.895.
**Extrapolation.

Physical Properties

Physical Property British Units Metric Units
Density RT
0.292 lb/in3
RT
8.08 g/cm3
Electrical Resistivity RT 43.8 µohm.in RT 111.2 µohm.cm
200°F 44.3 µohm.in 100°C 112.8 µohm.cm
400°F 45.2 µohm.in 200°C 114.7 µohm.cm
600°F 46.1 µohm.in 300°C 116.7 µohm.cm
800°F 46.9 µohm.in 400°C 118.6 µohm.cm
1000°F 47.8 µohm.in 500°C 120.6 µohm.cm
1200°F 48.3 µohm.in 600°C 122.4 µohm.cm
1400°F 48.6 µohm.in 700°C 123.1 µohm.cm
1600°F 48.9 µohm.in 800°C 123.8 µohm.cm
1800°F 49.3 µohm.in 900°C 124.5 µohm.cm
2000°F 49.6 µohm.in 1000°C 125.2 µohm.cm
2200°F 49.9 µohm.in 1100°C 125.9 µohm.cm
- - 1200°C 126.7 µohm.cm
Thermal Diffusivity RT
4.6 x 10-3 in2/s
RT
29.4 x 10-3 cm2/s
200°F
4.8 x 10-3 in2/s
100°C
30.8 x 10-3 cm2/s
400°F
5.2 x 10-3 in2/s
200°C
33.6 x 10-3 cm2/s
600°F
5.8 x 10-3 in2/s
300°C
37.0 x 10-3 cm2/s
800°F
6.4 x 10-3 in2/s
400°C
40.6 x 10-3 cm2/s
1000°F
7.0 x 10-3 in2/s
500°C
44.3 x 10-3 cm2/s
1200°F
7.2 x 10-3 in2/s
600°C
45.6 x 10-3 cm2/s
1400°F
7.4 x 10-3 in2/s
700°C
47.2 x 10-3 cm2/s
1600°F
7.5 x 10-3 in2/s
800°C
48.6 x 10-3 cm2/s
1800°F
7.8 x 10-3 in2/s
900°C
48.7 x 10-3 cm2/s
2000°F
8.4 x 10-3 in2/s
1000°C
50.9 x 10-3 cm2/s
2200°F
8.8 x 10-3 in2/s
1100°C
54.1 x 10-3 cm2/s
- - 1200°C
56.1 x 10-3 cm2/s
Thermal Conductivity RT
75 Btu.in/h.ft2.°F
RT 10.9 W/m-°C
200°F
82 Btu.in/h.ft2.°F
100°C 12.0 W/m-°C
400°F
95 Btu.in/h.ft2.°F
200°C 13.6 W/m-°C
600°F
108 Btu.in/h.ft2.°F
300°C 15.4 W/m-°C
800°F
126 Btu.in/h.ft2.°F
400°C 17.6 W/m-°C
1000°F
144 Btu.in/h.ft2.°F
500°C 19.9 W/m-°C
1200°F
162 Btu.in/h.ft2.°F
600°C 21.8 W/m-°C
1400°F
178 Btu.in/h.ft2.°F
700°C 24.7 W/m-°C
1600°F
185 Btu.in/h.ft2.°F
800°C 26.1 W/m-°C
1800°F
196 Btu.in/h.ft2.°F
900°C 26.9 W/m-°C
2000°F
213 Btu.in/h.ft2.°F
1000°C 28.7 W/m-°C
2200°F
228 Btu.in/h.ft2.°F
1100°C 31.1 W/m-°C
- - 1200°C 32.9 W/m-°C
Specific Heat RT 0.110 Btu/lb.°F RT 462 J/kg-°C
200°F 0.116 Btu/lb.°F 100°C 487 J/kg-°C
400°F 0.121 Btu/lb.°F 200°C 506 J/kg-°C
600°F 0.125 Btu/lb.°F 300°C 521 J/kg-°C
800°F 0.131 Btu/lb.°F 400°C 542 J/kg-°C
1000°F 0.136 Btu/lb.°F 500°C 562 J/kg-°C
1200°F 0.151 Btu/lb.°F 600°C 597 J/kg-°C
1400°F 0.159 Btu/lb.°F 700°C 653 J/kg-°C
1600°F 0.165 Btu/lb.°F 800°C 672 J/kg-°C
1800°F 0.167 Btu/lb.°F 900°C 689 J/kg-°C
2000°F 0.171 Btu/lb.°F 1000°C 704 J/kg-°C
2200°F 0.175 Btu/lb.°F 1100°C 719 J/kg-°C
- - 1200°C 732 J/kg-
Mean Coefficient of Thermal Expansion 78-200°F 7.2 µin/in-°F 25-100°C 13.0 µm/m-°C
78-400°F 7.6 µin/in-°F 25-200°C 13.7 µm/m-°C
78-600°F 7.9 µin/in-°F 25-300°C 14.0 µm/m-°C
78-800°F 8.1 µin/in-°F 25-400°C 14.4 µm/m-°C
78-1000°F 8.3 µin/in-°F 25-500°C 14.9 µm/m-°C
78-1200°F 8.6 µin/in-°F 25-600°C 15.5 µm/m-°C
78-1400°F 8.9 µin/in-°F 25-700°C 15.7 µm/m-°C
78-1600°F 9.2 µin/in-°F 25-800°C 16.6 µm/m-°C
78-1800°F 9.5 µin/in-°F 25-900°C 17.1 µm/m-°C
Dynamic Modulus of Elasticity RT
30.6 x 106 psi
RT 211 GPa
100°F
30.5 x 106 psi
50°C 210 GPa
200°F
30.1 x 106 psi
100°C 207 GPa
300°F
29.6 x 106 psi
150°C 204 GPa
400°F
29.1 x 106 psi
200°C 201 GPa
500°F
28.6 x 106 psi
250°C 198 GPa
600°F
27.8 x 106 psi
300°C 193 GPa
700°F
27.1 x 106 psi
350°C 189 GPa
800°F
26.5 x 106 psi
400°C 185 GPa
900°F
26.1 x 106 psi
450°C 182 GPa
1000°F
25.6 x 106 psi
500°C 179 GPa
1100°F
25.1 x 106 psi
550°C 176 GPa
1200°F
24.4 x 106 psi
600°C 173 GPa
1300°F
23.7 x 106 psi
650°C 168 GPa
1400°F
22.9 x 106 psi
700°C 163 GPa
1500°F
22.4 x 106 psi
750°C 159 GPa
1600°F
21.7 x 106 psi
800°C 155 GPa
1700°F
21.1 x 106 psi
850°C 151 GPa
1800°F
19.8 x 106 psi
900°C 147 GPa
950°C  266 GPa 

RT= Room Temperature

Physical Metallurgy

- Typical Grain Size Average Hardness
Plate 3 - 4½ 89
Bar 2 - 3 85
Sheet 3½ - 4½ 88

Thermal Stability

Exposure Temperature Exposure Duration 0.2% Yield strength Ultimate Tensile Strength 4D Elongation AGL* Elongation RA Impact energy
°F °C h ksi MPa ksi MPa % % % ft-lb J
- - 0 49 338 119.7 825 64.1 59.6 70.6 263 357
1200 649 1000 51.5 355 123.6 852 32.2 32.8 28.8 29 39
1200 649 4000 54.5 376 131.4 906 30.2 30 26.4 27 36
1200 649 8000 54.7 377 130.4 899 23.1 22.8 20 23 31
1200 649 16000 55.3 381 135.8 936 24.7 23.4 20.8 21 28
1200 649 20000 53.7 370 129.1 890 27.4 27.1 24.6 26 35
1200 649 30000 53.5 369 131.3 905 24.7 24.2 23.7 22 30
1200 649 50000 53.8 371 134.5 927 28.3 26.4 22.1 21 29
1400 760 1000 50.8 350 131.1 904 26.8 26.9 22.2 24 33
1400 760 4000 50.6 349 131.1 904 26.3 26.1 26 21 28
1400 760 8000 50 345 130.1 897 24.8 25.1 22.5 19 26
1400 760 16000 49.9 344 130.7 901 24.6 25 21.2 19 26
1400 760 20000 43.7 301 107.9 744 20.2 19.3 14 12 16
1400 760 30000 44.7 308 102.4 706 - 16.4 11.3 10 14
1400 760 50000 43.5 300 102.3 705 - 16.2 12.4 10 13
1600 871 1000 45.7 315 114.6 790 23.2 23.8 20.8 17 23
1600 871 4000 44.5 307 114 786 24.8 25.1 20.5 17 23
1600 871 8000 44.7 308 114.9 792 24.8 25.3 22.6 15 21
1600 871 16000 44.4 306 115 793 25.2 25.9 22.2 16 22
1600 871 20000 41 283 88.6 611 17 17.2 15.1 6 8
1600 871 30000 41.6 287 89.9 620 18.3 18.1 15.3 7 10
1600 871 50000 40.9 282 86.2 594 17.4 17.6 14.5 8 11
1800 982 1000 43.9 303 119.1 821 44.6 44.9 39 49 66
1800 982 4000 43.7 301 117.5 810 45.3 44.5 39.2 46 63
1800 982 8000 43.2 298 115.3 795