Principal Features

HAYNES® HR-120® alloy (UNS N08120) alloy is a solid-solution-strengthened heat-resistant alloy that provides excellent strength at elevated temperature combined with very good resistance to carburizing and sulfidizing environments. Its oxidation resistance is comparable to other widely used Fe-Ni-Cr materials, such as alloys 330 and 800H, but its strength at temperatures up to 2000ºF (1095ºC) is significantly higher, even in comparison to Ni-Cr alloys. The alloy can be readily formed hot or cold, and is commonly welded using HAYNES® 556® filler wire.

Applications

Applications include those which require high strength combined with good resistance to carburizing and sulfidizing environments such as the following:

• Bar Frame Heat Treating Baskets                                        • Radiant Tubes

• Wire Mesh Furnace Belts and Basket Liners                       • Cast Link Belt Pins

• Muffles, Retorts                                                                    • Recuperators

• Heat Treating Fixtures                                                          • Fluidized Bed Components

• Waste Incinerators

HR-120® alloy heat treat furnace basket and mesh liner. This 3/8 inch diameter rod frame basket has replaced 1/2 inch diameter baskets in similar design in 330 and 600 alloys. This reduction in rod diameter is equivalent to a 43% weight reduction.

Heat Treatment

HAYNES® HR-120® alloy is furnished in the solution annealed condition, unless otherwise specified. Depending on the product form, the alloy is solution annealed at a temperature ranging from 2150 to 2250 °F (1175 to 1230 °C) and rapidly cooled. For more information on heat-treatment, please click here.

*Please contact our technical support team if you have technical questions about this alloy.

Nominal Composition

Weight %
Iron 33 Balance
Nickel 37
Cobalt 3 max.
Chromium 25
Molybdenum 1 max.
Tungsten 0.5 max.
Niobium* 0.7
Manganese 0.7
Silicon 0.6
Nitrogen 0.2
Aluminum 0.1
Carbon 0.05
Boron 0.004
Titanium 0.2 max.

*Also known as Columbium

Creep-rupture Data

HR-120® Plate, Solution-annealed

Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
10h 100h 1,000h 10,000h
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 0.5 23.0 159
1 26.5 183
R 68 469 54 372 35 241 23.0 159
1300 704 0.5 20.3 140 14.0 97
1 23.5 162 15.9 110
R 45 310 32 221 21.7 150 15.0 103
1400 760 0.5 19.3 133 14.5 100 10.8 74 8.0 55
1 22.2 153 15.8 109 12.3 85 9.5 66
R 30 207 21.5 148 15.3 105 11.0 76
1500 816 0.5 13.8 95 10.5 72 8 55 5.7 39
1 15.3 105 11.4 79 8.4 58 6.2 43
R 21.8 150 15.3 105 11.0 76 7.8 54
1600 871 0.5 10.5 72 8.4 58 6.1 42 4.1 28
1 11.4 79 9.1 63 6.5 45 4.4 30
R 14.0 97 10.8 74 7.7 53 5.0 34
1700 927 0.5 8.0 55 6.0 41 3.9 27 2.4 17
1 8.5 59 6.7 46 4.4 30 2.7 19
R 11.2 77 7.8 54 5.1 35 3.1 21
1800 982 0.5 5.8 40 3.7 26 2.1 14 1.1 7.6
1 6.2 43 4.4 30 2.5 17 1.3 9.0
R 7.9 54 5.1 35 3.1 21 1.8 12
1900 1038 0.5 4.0 28 2.3 16 1.1 7.6
1 4.7 32 2.5 17 1.2 8.3 0.60 4.1
R 5.5 38 3.3 23 1.8 12 0.97 6.7
2000 1093 0.5 1.8 12 0.90 6.2
1 1.1 7.6
R 2.0 14 1.1 7.6 0.60 4.1
2100 1149 0.5 0.60 4.1 0.30 2.1
1 0.42 2.9
R 1.2 8.3 0.60 4.1 0.30 2.1

HR-120® Sheet, Solution-annealed, Limited Data

Temperature Creep Approximate Initial Stress to Produce Specified Creep in:
100 h 1,000 h
°F °C % ksi MPa ksi MPa
1400 760 1 14.6 101 10.4 72
R 21.6 149 14.4 99
1500 816 1 11.5 79 8.8 61
R 14.9 103 10.4 72
1600 871 1 8.2 57 6.6 46
R 10.3 71 7.2 50
1700 927 1 6.0 41 4.2 29
R 7.0 48 4.3 30
1800 982 1 3.3 23 2.4 17
R 4.4 30 2.7 19

Tensile Data

Average Tensile Data, Solution Heat-treated Sheet

Test Temperature Ultimate Tensile Strength 0.2% Offset Yield Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 104.2 718 47.5 328 46.3
1000 538 80.0 552 28.3 195 53.6
1200 649 73.5 507 27.0 186 55.0
1400 760 57.4 396 26.4 182 48.0
1600 871 32.6 225 24.7 170 67.2
1800 982 17.1 118 13.2 91 74.7
2000 1093 8.8 61 6.4 44 56.1

RT= Room Temperature

Average Tensile Data, Solution Heat-treated Plate

Test Temperature Ultimate Tensile Strength 0.2% Offset Yield Strength Elongation Reduction of Area
°F °C ksi MPa ksi MPa % %
RT RT 104.3 719 46.8 322 49.8 63.3
1000 538 80.4 554 26.9 186 58.7 57.7
1200 649 72.9 503 26.0 179 55.4 59.6
1400 760 59.8 412 25.6 177 51.6 65.6
1600 871 35.8 247 26.4 182 71.1 72.3
1800 892 18.6 128 14.5 100 83.6 77.4
2000 1093 9.6 66 7.4 51 84.1 69.4

RT= Room Temperature

Comparative Yield Strengths

Temperature 0.2% Yield Strength, ksi
°F HR-120® 800H RA330 600 601
70 46.8 35 42 41 35
1000 26.9
1200 26.0 16.9 21.5 30 25.4
1400 25.6 18.5 18.8 26 26.8
1600 26.4 18.5 15.9 11 19.2
1800 14.5 8.1 9 6 10.9
2000 7.4 3.3 3.1 est 5.1

Hardness and Grain Size

Solution-annealed Room Temperature Hardness

Form Hardness, HRBW Typical ASTM Grain Size
Sheet 88 3.5 – 5
Plate 87 0 – 5
Bar 84 0 – 4.5

HRBW = Hardness Rockwell “B”, Tungsten Indentor.

Thermal Stability

Condition Ultimate Tensile Strength 0.2% Offset Yield Strength Elongation Reduction of Area
ksi MPa ksi MPa % %
Solution Heat-treated 108.0 745 49.0 338 48.5 69
+ 1200°F/8,000 h 109.2 753 52.5 362 26.2 32.8
+ 1200°F/20,000 h 112.4 775 53.5 369 24.2 34
+ 1200°F/30,000 h 112.7 777 52.3 361 24.6 32.7
+ 1200°F/50,000 h 113.0 779 53.1 366 23.2 32.5
+1400°F/8,000 h 101.8 702 47.9 330 18.2 17.6
+1400°F/20,000 h 101.2 698 43.3 299 18.0 17.2
+1400°F/30,000 h 101.5 700 44.8 309 19.7 18.4
+1400°F/50,000 h 99.8 688 44.9 310 14.8* 10.8
+ 1600°F/8,000 h 101.0 696 44.7 308 22.6 22.6
+ 1600°F/20,000 h 96.9 668 40.9 282 19.4 17.9
+ 1600°F/30,000 h 96.7 667 40.3 278 22.0 19.5
+ 1600°F/50,000 h 94.3 650 39.8 274 20.1 18.2

*AGL, which tends to be lower; Other data are 4D Elong.

Oxidation Resistance

Metallographic Technique used for Evaluating Environmental Tests

Static Oxidation

HAYNES® HR-120® alloy exhibits good resistance to oxidizing environments and can be used at temperatures up to 2100°F (1150°C).  The following are comparative static oxidation test results at 1600°F (870°C), 1800°F (980°C), 2000°F (1090°C), and 2100°F (1150°C) for 1008 hours.

Alloy 1600°F (870°C) 1800°F (980°C) 2000°F (1090°C) 2100°F (1150°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils mm mils mm mils mm mils mm mils mm mils mm mils mm mils mm
HR‐120® 0.1 0.00 0.9 0.02 0.4 0.01 2.1 0.05 1.0 0.03 4.4 0.11 7.9 0.20 10.1 0.26
253MA 0.2 0.01 0.9 0.02 1.3 0.03 3.0 0.08 0.7 0.02 8.2 0.21 8.7 0.22 16.5 0.42
800HT 0.1 0.00 1.0 0.03 0.5 0.01 4.1 0.10 7.6 0.19 11.6 0.29 11.0 0.28 15.0 0.38
601 0.4 0.01 1.7 0.04 1.3 0.03 3.8 0.10 2.8 0.07 6.5 0.17
600 0.3 0.01 2.4 0.06 0.9 0.02 3.3 0.08 2.8 0.07 4.8 0.12
RA330 0.3 0.01 3.0 0.08 0.8 0.02 6.7 0.17
304SS 5.5 0.14 8.1 0.21 NA NA >19.6 >0.498 NA NA >19.5 >0.498
RA85H 0.5 0.01 8.3 0.21 3.0 0.08 26.0 0.66

Dynamic Oxidation

Burner rig oxidation tests were conducted by exposing samples of 3/8” x 2.5” x thickness (9mm x 64 mm x thickness), in a rotating holder to the products of combustion of 2 parts No. 1 and 1 part No. 2 fuel burned at a ratio of air to fuel of about 50:1. Gas velocity was about 0.3 mach. Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.

<thcolspan=”5″>1800°F/1000-h/2000-Cycles

Alloy Metal Loss Average Metal Affected
mils µm mils µm
556® 3.9 99 6.8 173
HR-120® 6.3 160 8.4 213
RA 330 6.5 165 9.5 241
800H/800HT 8.9 226 13.7 348
310 SS 16.0 406 18.3 465
253MA 16.6 422 17.8 452

Long-term Oxidation

Amount of metal affected for high‐temperature plate (0.25”) alloys exposed for 360 days (8,640 hours) in flowing air.  Cycled once per month.

Alloy Exposure Duration 1600°F 1800°F 2000°F 2100°F
Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected
h number of cycles mils mm mils mm mils mm mils mm mils mm mils mm mils mm mils mm
214® 8640 12 0.1 0.00 0.2 0.01 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00
230® 8640 12 0.2 0.01 1.4 0.04 0.1 0.00 2.5 0.06 3.4 0.09 11.0 0.28 28.5 0.72 34.4 0.87
HR-120® 8640 12 0.3 0.01 1.6 0.04 0.5 0.01 3.3 0.08 18.1 0.46 23.2 0.59 33.6 0.85 44.0 1.12
556® 8640 12 0.3 0.01 1.9 0.05 0.5 0.01 6.2 0.16 15.0 0.38 24.1 0.61
617 8640 12 0.3 0.01 1.6 0.04
800HT 8640 12 0.4 0.01 2.9 0.07

Water Vapor Testing

Alloy
1008 hours at 1600ºF Cycled 1x/week in air+10% H2O
1008 hours at 1600ºF Cycled 1x/week in air+20% H2O
6 months at 1400ºF Cycled 1x/week in air+10% H2O
Meal Loss Average Metal Affected Meal Loss Average Metal Affected Meal Loss Average Metal Affected
mils mm mils mm mils mm mils mm mils mm mils mm
HR-120® 0.09 0.002 0.68 0.017 0.04 0.001 0.29 0.007 0.10 0.003 0.50 0.013
253MA 0.66 0.017 1.59 0.040 0.08 0.002 0.68 0.017
347SS 0.86 0.022 1.48 0.038 0.18 0.005 0.88 0.022 0.46 0.012 1.26 0.032
800HT 0.12 0.003 0.82 0.021

Carburization Resistance

HAYNES® HR-120® alloy has good resistance to carburization. Results from 1800°F (982°C) carburization testing show HR-120® alloy to be better than stainless steels. Both pack and gaseous carburization test results are presented.

Metallographic Technique used for Evaluating Environmental Tests

Comparative Sulfidation Resistance

Independent outside testing laboratories have also verified the superior performance of HR-120® alloy in sulfidizing environments. Petten Establishment in the Netherlands found that HR-120® alloy performed significantly better than alloys 800H, 347SS and 321SS at 1290°F (700°C) in hydrogen plus 7 percent carbon monoxide plus 1.5 percent water vapor plus 0.6 percent hydrogen sulfide. The HR-120® alloy was found to be magnitudes better than the other alloys.

Hot Corrosion Comparison

Hot corrosion is an accelerated oxidation or sulfidation attack due to a molten salt deposit. This form of corrosion is seen in gas turbines as well as in other industrial environments. The hot corrosion resistance of the HR-120® alloy was evaluated by performing laboratory burner rig testing. The burner rig used No. 2 fuel oil with a sulfur content of about 1 weight percent and air to generate the test environment. The air-to-fuel ratio was maintained at 35 to 1. The test was run at 1650°F (900°C) for 500 hours with a two-minute cooling cycle to less than 400°F (205°C) every hour. During testing a synthetic sea salt solution (ASTM D1141-52) was continuously injected into the combustion zone. The following photographs show the appearance of the specimens after testing. Specimens of 253 MA, RA 85H, RA 330, and 800H alloys were either severely corroded or partially destroyed. On the other hand, the HR-120® alloy specimen still looks extremely good, showing little attack.

Hot corrosion test specimens after exposure at 1650°F (900°C) for 500 hours
using 50 ppm sea salt injection and 1 percent sulfur fuel.

Burner Rig Hot Corrosion Data for Alloys at 1650°F (900°C) exposed for 500 hours

Alloy Time % S in Fuel Salt Metal Loss Average Metal Affected
h ppm mils mm mils mm
HR-120® 500 1 50 0.9 0.02 5.2 0.13
RA330 500 1 50 1.4 0.04 5.8 0.15
800H 500 1 50 1.0 0.03 10.3 0.26
253MA 500 1 50 >25 >0.64 >25 >0.64
RA85H 500 1 50 >25 >0.64 >25 >0.64

Physical Properties

Physical Property British Units Metric Units
Density RT
0.291 lb/in.3
RT
8.07 g/cm.3
Melting Range 2375°F - 1300°C -
Electrical Resistivity RT 41.4 µohm.in RT 105.2 µohm.cm
200°F 42.4 µohm.in 100°C 107.8 µohm.cm
400°F 44.4 µohm.in 200°C 112.5 µohm.cm
600°F 45.4 µohm.in 300°C 114.9 µohm.cm
800°F 46.3 µohm.in 400°C 116.7 µohm.cm
1000°F 47.3 µohm.in 500°C 119.3 µohm.cm
1200°F 48.2 µohm.in 600°C 121.4 µohm.cm
1400°F 48.8 µohm.in 700°C 123.1 µohm.cm
1600°F 49.4 µohm.in 800°C 124.5 µohm.cm
1800°F 50.0 µohm.in 900°C 125.7 µohm.cm
2000°F 50.3 µohm.in 1000°C 126.6 µohm.cm
2200°F 50.7 µohm.in 1100°C 127.8 µohm.cm
- - 1200°C 128.7 µohm.cm
Thermal Diffusivity RT
4.7 x 10-3 in2/s
RT
30.4 x 10-3 cm2/s
200°F
5.0 x 10-3 in2/s
100°C
32.4 x 10-3 cm2/s
400°F
5.4 x 10-3 in2/s
200°C
34.8 x 10-3 cm2/s
600°F
5.8 x 10-3 in2/s
300°C
37.2 x 10-3 cm2/s
800°F
6.3 x 10-3 in2/s
400°C
39.7 x 10-3 cm2/s
1000°F
6.7 x 10-3 in2/s
500°C
42.2 x 10-3 cm2/s
1200°F
7.1 x 10-3 in2/s
600°C
44.7 x 10-3 cm2/s
1400°F
7.4 x 10-3 in2/s
700°C
46.9 x 10-3 cm2/s
1600°F
7.5 x 10-3 in2/s
800°C
48.1 x 10-3 cm2/s
1800°F
7.8 x 10-3 in2/s
900°C
48.8 x 10-3 cm2/s
2000°F
78.2 x 10-3 in2/s
1000°C
50.7 x 10-3 cm2/s
2200°F
8.6 x 10-3 in2/s
1100°C
52.9 x 10-3 cm2/s
- - 1200°C
54.5 x 10-3 cm2/s
Thermal Conductivity RT
78 Btu.in/h.ft2.°F
RT 11.4 W/m-°C
200°F
84 Btu.in/h.ft2.°F
100°C 12.7 W/m-°C
400°F
96 Btu.in/h.ft2.°F
200°C 14.1 W/m-°C
600°F
108 Btu.in/h.ft2.°F
300°C 15.4 W/m-°C
800°F
121 Btu.in/h.ft2.°F
400°C 17.1 W/m-°C
1000°F
134 Btu.in/h.ft2.°F
500°C 18.7 W/m-°C
1200°F
150 Btu.in/h.ft2.°F
600°C 21.0 W/m-°C
1400°F
168 Btu.in/h.ft2.°F
700°C 23.3 W/m-°C
1600°F
180 Btu.in/h.ft2.°F
800°C 24.9 W/m-°C
1800°F
191 Btu.in/h.ft2.°F
900°C 26.2 W/m-°C
2000°F
205 Btu.in/h.ft2.°F
1000°C 28.0 W/m-°C
2200°F
216 Btu.in/h.ft2.°F
1100°C 29.6 W/m-°C
Specific Heat RT 0.112 Btu/lb.°F RT 467 J/kg-°C
200°F 0.116 Btu/lb.°F 100°C 483 J/kg-°C
400°F 0.121 Btu/lb.°F 200°C 500 J/kg-°C
600°F 0.125 Btu/lb.°F 300°C 522 J/kg-°C
800°F 0.130 Btu/lb.°F 400°C 531 J/kg-°C
1000°F 0.135 Btu/lb.°F 500°C 558 J/kg-°C
1200°F 0.144 Btu/lb.°F 600°C 607 J/kg-°C
1400°F 0.152 Btu/lb.°F 700°C 647 J/kg-°C
1600°F 0.159 Btu/lb.°F 800°C 655 J/kg-°C
1800°F 0.164 Btu/lb.°F 900°C 660 J/kg-°C
2000°F 0.167 Btu/lb.°F 1000°C 663 J/kg-°C
2200°F 0.169 Btu/lb.°F 1100°C 667 J/kg-°C
- - 1200°C 671 J/kg-°C
Mean Coefficient of Thermal Expansion 78-200°F 7.95 µin/in-°F 25-100°C 14.3 µm/m-°C
78-400°F 8.29 µin/in-°F 25-200°C 14.9 µm/m-°C
78-600°F 8.56 µin/in-°F 25-300°C 15.3 µm/m-°C
78-800°F 8.80 µin/in-°F 25-400°C 15.8 µm/m-°C
78-1000°F 8.98 µin/in-°F 25-500°C 16.1 µm/m-°C
78-1200°F 9.24 µin/in-°F 25-600°C 16.4 µm/m-°C
78-1400°F 9.52 µin/in-°F 25-700°C 16.9 µm/m-°C
78-1600°F 9.72 µin/in-°F 25-800°C 17.3 µm/m-°C
78-1800°F 9.87 µin/in-°F 25-900°C 17.6 µm/m-°C
- - 25-1000°C 17.8 µm/m-°C
Dynamic Modulus of Elasticity RT
28.7 x 106 psi
RT 198 GPa
200°F
28.2 x 106 psi
100°C 194 GPa
400°F
27.0 x 106 psi
200°C 187 GPa
600°F
25.9 x 106 psi
300°C 179 GPa
800°F
24.7 x 106 psi
400°C 172 GPa
1000°F
23.7 x 106 psi
500°C 165 GPa
1200°F
22.5 x 106 psi
600°C 158 GPa
1400°F
21.4 x 106 psi
700°C 151 GPa
1600°F
20.2 x 106 psi
800°C 143 GPa
1800°F
18.9 x 106 psi
900°C 136 GPa
2000°F
17.3 x 106 psi
1000°C 129 GPa
Dynamic Shear Modulus RT
11.0 x 106 psi
RT 76 GPa
200°F
10.7 x 106 psi
100°C 74 GPa
400°F
10.3 x 106 psi
200°C 71 GPa
600°F
9.8 x 106 psi
300°C 68 GPa
800°F
9.3 x 106 psi
400°C 65 GPa
1000°F
8.9 x 106 psi
500°C 62 GPa
1200°F
8.4 x 106 psi
600°C 59 GPa
1400°F
8.0 x 106 psi
700°C 56 GPa
1600°F
7.5 x 106 psi
800°C 53 GPa
1800°F
7.0 x 106 psi
900°C 50 GPa
2000°F
6.3 x 106 psi
1000°C 47 GPa
Poisson’s Ratio RT 0.31 RT 0.31
200°F 0.31 100°C 0.31
400°F 0.32 200°C 0.32
600°F 0.32 300°C 0.32
800°F 0.33 400°C 0.32
1000°F 0.33 500°C 0.33
1200°F 0.34 600°C 0.33
1400°F 0.34 700°C 0.34
1600°F 0.35 800°C 0.34
1800°F 0.36 900°C 0.35
2000°F 0.37 1000°C 0.36

Welding

HAYNES® HR-120® alloy is readily welded by Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Shielded Metal Arc Welding (SMAW), and resistance welding techniques. Submerged Arc Welding (SAW) is not recommended as this process is characterized by high heat input to the base metal and slow cooling of the weld.  These factors can increase weld restraint and promote cracking.

Base Metal Preparation

The welding surface and adjacent regions should be thoroughly cleaned with an appropriate solvent prior to any welding operation.   All greases, oils, cutting oils, crayon marks, machining solutions, corrosion products, paint, scale, dye penetrant solutions, and other foreign matter should be completely removed.  It is preferable, but not necessary, that the alloy be in the solution- annealed condition when welded.

Filler Metal Selection

HAYNES® 556® filler metal (AMS 5831, AWS A5.9 ER3556) and MULTIMET® (AMS 5794) coated electrodes are recommended for joining HR-120® alloy. When dissimilar base metals are to be joined, such as HR-120® alloy to a stainless steel, HAYNES® 556® filler metal and MULTIMET® coated electrodes are again recommended. Please click here or the Haynes Welding SmartGuide for more information.

Preheating, Interpass Temperatures, and Postweld Heat Treatment

Preheat is not required. Preheat is generally specified as room temperature (typical shop conditions).   Interpass temperature should be maintained below 200°F (93°C). Auxiliary cooling methods may be used between weld passes, as needed, providing that such methods do not introduce contaminants.  Postweld heat-treatment is not generally required for HR-120® alloy.  For further information, please click here.

Nominal Welding Parameters

Details for GTAW, GMAW and SMAW welding are given here. Nominal welding parameters are provided as a guide for performing typical operations and are based upon welding conditions used in our laboratories.

Tensile Properties of All Weld Metal (AWM)

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 77.2 530 115.4 795 37
1200 650 53.3 380 81.0 560 39
1400 760 49.5 340 66.3 455 26
1600 870 36.8 255 40.2 270 34
1800 980 23.6 165 24.0 165 30

RT=Room Temperature

Transverse Tensile Tests, HR-120® Base Metal Welded with Haynes 556® filler

Temperature 0.5 Inch Plate 0.125 Inch Sheet
UTS UTS
°F °C ksi MPa psi MPa
RT RT 106 731 104 717
200 93 97 666 97 665
300 149 91 625 92 632
400 204 87 600 89 612
500 260 86 595 78 540
600 316 85 589 83 571
700 371 84 576 79 547
800 427 84 581 83 570
900 482 82 568 82 564
1000 538 79 544 80 549
1100 593 75 516 77 530
1200 649 71 490 74 507
1300 704 68 471 66 455
1400 760 60 413 55 382
1500 816 47 327 45 312
1600 871 35 241 33 226
1700 927 27 184 26 176
1800 982 20 136 25 174
1900 1038 15 102 16 110
2000 1093 12 84 9 64

Transverse Tensile Tests, HR-120® Plate Welded with Haynes 556® filler

Temperature 1 Inch Plate 0.5 Inch Plate
UTS UTS
°F °C ksi MPa ksi MPa
RT RT 110 762 106 731
200 93 102 703 96 661
300 149 96 665 91 629
400 204 93 641 88 609
500 260 90 622 86 590
600 316 89 611 84 582
700 371 89 612 82 564
800 427 89 611 82 563
900 482 87 602 82 568
1000 538 78 538 78 534
1100 593 79 545 75 519
1200 649 75 515 72 497
1300 704 72 497 68 471
1400 760 64 439 60 412
1500 816 53 362 48 329
1600 871 40 279 36 247
1700 927 31 215 27 188
1800 982 24 166 20 141
1900 1038 18 123 15 106
2000 1093 12 84 11 74

HR-120® Plate and Transverse Weld Room Temperature Charpy Impact Tests
0.5″ Plate, Welded with Haynes 556®

Temperature 1 Inch Plate 0.5 Inch Plate
UTS UTS
°F °C ksi MPa ksi MPa
RT RT 110 762 106 731
200 93 102 703 96 661
300 149 96 665 91 629
400 204 93 641 88 609
500 260 90 622 86 590
600 316 89 611 84 582
700 371 89 612 82 564
800 427 89 611 82 563
900 482 87 602 82 568
1000 538 78 538 78 534
1100 593 79 545 75 519
1200 649 75 515 72 497
1300 704 72 497 68 471
1400 760 64 439 60 412
1500 816 53 362 48 329
1600 871 40 279 36 247
1700 927 31 215 27 188
1800 982 24 166 20 141
1900 1038 18 123 15 106
2000 1093 12 84 11 74

Restrained 1/2 inch thick HR-120® plates have been successfully joined using 556® weld wire and MULTIMET® coated electrodes. The results below indicate an absence of hot cracking and microfissuring related weldability problems under the test conditions.

Welding Process Welding Product Hot Cracking 2T Radius Guided Bend Test
Face Side
GTAW 556® Filler Metal None Pass Pass
GMAW 556® Filler Metal None Pass Pass
SMAW MULTIMET® Electrodes None Pass Pass

Room Temperature Tensile Strength of Transverse Welded Specimens

Welding Process Welding Product Tensile Strength Fracture Location
ksi MPa
GTAW 556® Filler Metal 111.0 765 HR-120® Base Metal
GMAW 556® Filler Metal 109.4 755 HR-120® Base Metal
SMAW MULTIMET® Electrodes 109.7 755 HR-120® Base Metal

Machining and Grinding

HAYNES® HR-120® alloy can be readily machined using conventional techniques. Generally, the same practices are employed as those used with the 300 series austenitic stainless steels. Some minor adjustments in the machining parameters may be required to obtain optimum results. High speed steel tools are found to be satisfactory, although machining speeds can be substantially increased by using carbide cutting tools. As a general statement, grinding operations with HAYNES® HR-120® alloy are considered equivalent to those of the 300 series stainless steels. As with other alloys, grinding is recommended where a close tolerance is required. Basic “Do’s” and “Don’ts” that should be considered during machining are:

Do:

1. Use machine tools that are rigid and overpowered, where possible.

2. Insure work piece and tools are held rigid. In addition, minimize tool overhang.

3. Make sure tools are always sharp. Change to sharpened tools at regular intervals rather than out of necessity. Remember, cutting edges, particularly throw-away inserts, are expendable. Don’t try to prove how long they can last. Don’t trade dollars in machine times for pennies in tool cost.

4. Use positive rake angle tools for most machining operations. Negative rake angle tools can be considered for intermittent cuts and heavy stock removal.

5. Use heavy, constant, feeds to maintain positive cutting action. If feed slows and the tool dwells in the cut, work hardening occurs, tool life deteriorates and close tolerance is impossible.

6. Avoid conditions such as chatter and glazing. This can cause work hardening of the surface, making subsequent machining difficult.

7. Flood the work with premium-quality sulfochlorinated water soluble oil or water-base chemical emulsion oils with extreme pressure additives. Dilute per the recommendations of the manufacturer.

8. Use heavy-duty sulfochlorinated oil for drilling and tapping. Special proprietary tapping oils can also be used.

9. Use air jet directed on the tool when dry cutting. This can provide substantial increase in tool life.

Don’t:

1. Do not make intermittent cuts, if possible. This tends to work harden the surface, making subsequent cuts more difficult.

Detailed Machining Information
Turning, Boring and Facing
The table below represents a typical range of values for normal turning operations. The depth of cut (particularly for roughing operations) is quite large with relatively low feed rates. These parameters are equipment and component dependent. The larger depths of cuts and higher speeds are recommended only when using heavy, overpowered equipment on large rigid components.

Conditions Roughing Finishing
Depth of Cut 0.125-0.250 in. 0.020-0.040 in.
Feed Rate 0.008-0.010 ipr 0.006-0.008 ipr
Speed-HSS 30-50 sfpm 40-60 sfpm
Speed-Carbide 100-170 sfpm 140-180 sfpm

Drilling

Standard high-speed steel bits are normally used. For drill bits larger than 3/8″, thinning the web may reduce thrust and aid chip control. The following are suggested speed and feed rates for various diameter drills.

Diameter Speed Feed Rate
1/8 in 250 RPM (max) 0.002 inch/rev.
1/4 in 250 RPM (max) 0.003 inch/rev.
1/2 in 250 RPM 0.005 inch/rev.
1 in 150 RPM 0.011 inch/rev.
1-1/2 in 100 RPM 0.013 inch/rev.
2 in 75 RPM 0.016 inch/rev.

For other diameters (above 1/2 inch diameter) the spindle speed may be calculated from the following: RPM = 150/Diameter (inches). This results in a cutting speed of about 40 sfpm. For drill diameters smaller than 1/2 inch, speed rates substantially below 40 sfpm are required.

Reaming

Standard fluted reamers of high-speed steel are generally used. Speeds should be about 20-25 sfpm for diameters above 1/2 inch. For small diameter reamers (less than 1/2 inch diameter) cutting speeds should be reduced substantially. Feed rates will range from 0.002 to 0.006 inch/revolution depending upon diameter. If carbide tipped reamers are used, the speed can be increased to 70 sfpm for reamers above 1/2 inch diameter. If chatter occurs, reduce speed.

Tapping

HAYNES HR-120 alloy is tapped using the same tooling and conditions as used with type 316 stainless steel. High speed steel taps work well. Cutting speed can be up to 20 sfpm for taps above 1/2 inch diameter. For small diameter taps (less than 1/2 inch diameter) cutting speeds should be reduced substantially.

Thread engagement can be reduced because of the high strength of this alloy. Generally, thread engagement of 60 to 75 percent is considered acceptable. Thread engagement is considered a design parameter and therefore should be left to the design engineer. As a general statement, 75 percent thread engagement is common for low strength materials, but only leads to increased tool wear and possible breakage in high strength alloys. It does not increase the holding strength in these alloys.

Milling

High speed steel cutters, with good impact strength, are recommended due to the interrupted nature of the cutting action. A cutting speed of 30 to 40 sfpm with feed rates of 0.002 to 0.005 inch/tooth is generally recommended. If carbide cutters are employed, speeds of 60 to 80 sfpm are possible.

Applications

Comparative Data

Mechanical Property* HR-120® 214® 230® 556® X 600 601 RA330 253MA 800H 304 SS 310 SS 316 SS
Annealing Temperature °F 2250 2000 2250 2150 2150 2050 2100 2050 2000 2100 2000 2150 2000
Typical ASTM Grain Size 3 – 6 3 – 5 5 – 6 5 – 6 5 – 6 2 – 4 2 – 4 4 – 6 3 – 6 2 – 4 2 – 5 3 – 4 5 – 7
Ultimate Tensile Strength, ksi 70°F 104.3 138.9 125.4 116.4 107.5 96.0 102.0 85.0 104.0 82.0 85.0 82.7 103.9
1200°F 72.9 114.9 97.7 83.1 78.5 65.0 74.0 55.7 64.6 59.0 43.0 54.0 60.5
1400°F 59.8 79.4 87.7 68.5 66.6 38.0 43.0 34.0 49.8 39.0 2736.0 35.1 39.0
1600°F 35.8 66.4 63.1 49.3 49.6 20.0 22.0 18.7 30.8 21.0 17.5 19.1 24.6
1800°F 18.6 16.7 35.2 30.7 31.1 11.0 13.0 10.7 11.0 **7.4 10.5 14.0
2000°F 9.6 9.0 19.5 16.1 16.5 (5.1) 6.5 5.0 4.3 7.1
2200°F 5.0 9.4 **5.2
0.2% Yield Strength, ksi 70°F 46.8 82.2 57.4 54.6 49.4 41.0 35.0 42.0 50.8 35.0 27.9 35.1 36.7
1200°F 26.0 75.9 39.5 30.6 30.3 30.0 25.4 21.5 24.1 16.9 11.0 20.7 20.5
1400°F 25.6 73.6 42.5 29.3 31.0 26.0 26.8 18.8 22.4 18.5 10.5 19.3 17.9
1600°F 26.4 50.4 37.3 27.9 28.4 11.0 19.2 15.9 18.1 18.5 7.4 12.2 10.6
1800°F 14.5 8.4 21.1 18.5 17.9 6.0 10.9 9.0 8.1 6.4
2000°F 7.4 4.2 10.8 8.7 9.1 (3.1) 5.1 3.3 3.1
2200°F 1.4 4.3 **2.0
Tensile Elongation, % 70°F 50 43 50 51 53 45 50 45 51 49 61 54 59
1200°F 55 33 55 57 64 49 46 51 44 38 37 21 40
1400°F 52 23 53 53 58 70 72 65 44 43 31 19 49
1600°F 71 34 65 69 75 80 90 69 87 35 28 59
1800°F 84 86 83 84 95 115 100 74 100 **38 24 41
2000°F 84 89 83 95 98 (120) 120 108 85
2200°F 92 109 121
Stress to Rupture in 1,000 Hours, ksi 1200°F 38.0 42.5 38.0 34.0 20.0 28.0 23.0 23.8 14.1 17.0 20.5
1400°F 17.0 25.0 20.0 17.5 15.0 8.1 9.8 7.0 9.2 9.8 7.4 7.4 8.8
1600°F 8.0 8.9 9.5 7.5 6.0 3.5 4.4 3.1 4.4 4.8 3.0 3.3 3.4
1800°F 3.5 1.8 3.0 3.0 2.4 1.8 2.2 1.3 1.9 1.9 1.2 1.4 1.3
2000°F 0.8 0.9 **1.0 **0.8 (0.9) 1.0 0.7 1.0

( ) Estimated
*Manufacturer’s laboratory or published data
**Limited data

Physical Property* HR-120® 214® 230® 556® X 600 601 RA330 253MA 800H 304 SS 310 SS 316 SS
Density, lb/in3
0.291 0.291 0.324 0.297 0.297 0.304 0.291 0.289 0.282 0.287 0.278 0.285 0.287
Incipient Melting Point °F 2375 2475 2375 2425 2300 2470 2375 2450 2500 2475 2250 2550 2500
Electrical Resistivity, μ ohm-in 70°F 41.4 53.5 49.2 37.5 45.2 40.6 46.9 29.9 33.1 38.9 28.7 38.2 29.4
400°F 44.4 53.9 49.8 40.5 46.7 41.5 48.2 43.0 40.6 43.0 34.6 41.7 34.5
800°F 46.3 54.3 50.7 43.5 48.4 43.0 49.2 45.6 48.8 46.1 40.6 45.7 39.3
1200°F 48.2 53.5 51.6 45.7 49.5 49.5 47.8 54.3 45.7 48.4 43.7
1600°F 49.4 49.6 50.3 17.3 49.8 50.2 49.1 56.3 47.2 50.8
2000°F 50.3 47.6 (48.4) 48.6 49.7 51.1 (57.5)
Thermal Conductivity, Btu-in/ft2-hr °F
70°F 78 83 62 77 63 103 78 86 101 80 99 91 90
400°F 96 99 87 107 83 121 100 108 121 103 116 112 108
800°F 120 132 118 135 121 145 126 134 140 127 141 145 132
1200°F 150 175 148 160 152 172 153 162 156 152 167 182 152
1600°F 180 215 179 185 182 200 178 198 184 181 192 213 172
2000°F 205 234 (210) 210 (230) 203
Mean Coefficient of Thermal Expansion, μ in/in-°F (R to Temp.) 400°F 7.9 7.4 7.2 8.2 7.9 7.7 8.0 8.6 9.3 8.8 9.1 8.9 9.1
800°F 8.8 7.9 7.6 8.6 8.2 8.1 8.3 9.1 9.8 9.2 9.6 9.2 9.8
1200°F 9.2 8.6 8.1 9.0 8.6 8.6 8.9 9.6 10.1 9.6 10.2 9.7 10.3
1400°F 9.5 9.0 8.3 9.2 8.8 8.9 9.2 9.7 10.3 9.9 10.7 10.0 10.4
1600°F 9.7 9.6 8.6 9.4 9.0 9.1 9.5 9.8 10.5 10.2 10.8 10.4 10.5
1800°F 9.9 10.2 8.9 9.5 9.2 9.3 9.8 10.0 10.8 (10.5) 11.0 40.7 10.7
2000°F 11.1 (9.2) 9.6 (9.4) (9.5) 10.2 (10.2) (11.1) 11.4 11.0
Modulus of Elasticity, psi x 106
70°F 28.7 31.6 30.6 29.7 29.8 31.1 30.0 28.5 29.0 28.4 27.9 29.0 28.5
400°F 27.0 29.6 29.3 28.2 28.6 29.7 28.5 26.9 26.8 26.6 26.6 26.9 26.9
800°F 24.7 27.4 27.3 25.6 26.7 27.8 26.6 24.9 24.4 24.4 24.1 24.3 24.2
1200°F 22.5 25.3 25.3 23.1 24.7 25.5 24.1 22.4 21.7 22.3 21.1 21.8 21.5
1400°F 21.4 23.9 24.1 21.8 23.3 24.3 22.5 21.0 20.2 21.1 19.4 20.5 20.0
1600°F 20.2 22.3 23.1 20.9 22.2 22.8 20.5 19.5 20.0 19.2
1800°F 18.9 20.2 21.9 20.1 20.4 21.0 18.4 18.0 17.6 18.7
2000°F 17.3 19.0 16.2 17.2

( )  Estimated
*Manufacturer’s labroatory or published data

Specifications and Codes

Specifications

HAYNES® HR-120® alloy (N08120)
Sheet, Plate & Strip AMS 5916SB 409/B 409P= 45
Billet, Rod & Bar SB 408/B 408B 472P= 45
Coated Electrodes
Bare Welding Rods & Wire
Seamless Pipe & Tube SB 407/B 407SB 163/B 163P= 45
Welded Pipe & Tube SB 514/B 514SB 515/B 515P= 45
Fittings SB 366/B 366P= 45
Forgings SB 564/B 564P= 45
DIN No. 2.4854NiFe33Cr25Co
Others

 

Codes

HAYNES® HR-120® alloy (N08120)
ASME Section l
Section lll Class 1
Class 2
Class 3
Section lV HF-300.2
Section Vlll Div. 1
1800°F (982°C)1,2
Div. 2
Section Xll
B16.5
B16.34
B31.1
B31.3
MMPDS 6.3.10

1Plate, Sheet, Bar, Forgings, fittings, welded pipe/tube, seamless pipe/tube
2Properties up to 1650ºF (899ºC) are found in the latest ASME BPV Code, and from 1650ºF – 1800ºF (899ºC – 982ºC) in ASME Code Case 2672

Disclaimer

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data displayed on this site but makes no representations or warranties as to the data’s accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums.  It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc.  All trademarks are owned by Haynes International, Inc., unless otherwise indicated.

Alloy Brochure

Download