Principal Features

Strong and Oxidation Resistance

HASTELLOY® X alloy (UNS N06002 (W86002) is a nickel-chromium-iron-molybdenum alloy that possesses an exceptional combination of oxidation resistance, fabricability and high-temperature strength. It has also been found to be exceptionally resistant to stress-corrosion cracking in petrochemical applications. X alloy exhibits good ductility after prolonged exposure at temperatures of 1200, 1400, 1600°F (650, 760 and 870°C) for 16,000 hours.

Ease of Fabrication

HASTELLOY® X alloy has excellent forming and welding characteristics.  It may be forged or otherwise hot-worked, providing it is held at 2150°F (1177°C) for a time sufficient to bring the entire piece to temperature.  As a consequence of its good ductility, HASTELLOY® X alloy is also readily formed by cold- working.  All hot- or cold- worked parts should be annealed and rapidly cooled in order to restore the best balance of properties.

The alloy can be welded by a variety of techniques, including gas tungsten arc (GTAW), gas metal arc (GMAW), shielded metal arc (SMAW), and resistance welding.

Additional information regarding fabrication can be found here.

Heat Treatment

Wrought forms of HASTELLOY® X alloy are furnished in the solution heat-treated condition unless otherwise specified. X alloy is typically solution heat-treated at 2150°F (1177°C) and rapid cooled. Bright annealed products are cooled in hydrogen.  Annealing at temperatures lower than the solution heat- treating may cause precipitation of secondary phases, which may affect the alloy’s strength and ductility.

Useful for Aircraft, Furnace and Chemical Process Components

X alloy has wide use in gas turbine engines for combustion zone components such as transition ducts, combustor cans, spray bars and flame holders as well as in afterburners, tailpipes and cabin heaters. It is recommended for use in industrial furnace applications because it has unusual resistant to oxidizing, reducing and neutral atmospheres. Furnace rolls of this alloy were still in good condition after operating for 8,700 hours at 2150°F (1177°C). HASTELLOY® X alloy is also used in the chemical process industry for retorts, muffles, catalyst support grids, furnace baffles, tubing for pyrolysis operations and flash drier components.

*Please contact our technical support team if you have technical questions about this alloy.

Nominal Composition

Weight %
Nickel 47 Balance
Chromium 22.0
Iron 18.0
Molybdenum 9.0
Cobalt 1.5
Tungsten 0.6
Carbon 0.1
Manganese 1 max.
Silicon 1.0 max.
Boron 0.008 max.
Niobium 0.5 max. 
Aluminum 0.5 max. 
Titanium 0.15 max. 

Creep and Stress-Rupture Strengths

Minimum Creep Rate, HASTELLOY® X Sheet, Solution-Annealed

Test Temperature Average Stress for Indicated Percent/Hour Minimum Creep Rate
0.0001 0.001 0.01 0.1
°F °C ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 14.7 101 21.0 145 31.0 214 44.0 303
1400 760 7.2 50 10.0 69 14.0 97 19.5 134
1600 871 2.7 19 4.1 28 6.2 43 9.2 63
1800 982 0.7 5 1.3 9 2.2 15 3.7 26
2000 1093 - - - - - - 0.9 6

HASTELLOY® X Plate, Solution-annealed

Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 h 100 h 1,000 h 10,000 h
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 0.5 - - 27.2 188 19 128 12.8 88
1 - - 30 207 21 145 15.5 107
R 65* 448* 50 345 36 248 26 179
1300 704 0.5 25 172 16.2 112 11.1 77 8.2 57
1 27 186 19 131 14 97 10.5 72
R 46 317 32 221 23 159 17 117
1400 760 0.5 15 103 10.3 71 7.5 52 5.6 39
1 18 124 13 90 9.5 66 7.1 49
R 30 207 21 146 15.5 107 11.5 79
1500 816 0.5 9.9 68 7.2 50 5.3 37 3.85 27
1 12.5 86 9.1 63 6.7 46 4.7 32
R 21 141 15 103 10.5 72 7.2 50
1600 871 0.5 7.0 48 5.1 35 3.7 26 2.4 17
1 8.9 61 6.4 44 4.5 31 2.9 20
R 15 100 10.0 69 6.8 47 4.5 31
1700 927 0.5 5.1 35 3.6 25 2.3 16 1.3 9.0
1 6.4 44 4.4 30 2.7 19 1.5 10
R 10.0 69 6.6 46 4.3 30 2.6 18
1800 982 0.5 3.6 25 2.3 16 1.25 8.6 0.55 3.8
1 4.4 30 2.7 19 1.45 10 0.65 4.5
R 6.7 46 4.3 30 2.6 18 1.4 10
1900 1038 0.5 2.4 16 1.3 9.0 0.55 3.8 - -
1 2.8 19 1.5 10 0.65 4.5 - -
R 4.3 30 2.6 18 1.4 10 - -
2000 1093 0.5 1.4 10 0.60 4.1 0.15* 1.0* - -
1 1.6 11 0.70 4.8 0.20* 1.4* - -
R 2.7 19 1.4 10 0.60* 4.1* - -

*Significant extrapolation

HASTELLOY® X Sheet, Solution-annealed

Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 h 100 h 1,000 h 10,000 h
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1200 649 0.5 - - 26 178 18 124 - -
1 - - 28 193 21 145 - -
R 66* 455* 48 331 35 241 26 179
1300 704 0.5 23.5 162 16 112 12 83 - -
1 26 179 19 131 14 97 - -
R 44 303 32 221 23 159 17 117
1400 760 0.5 15 103 11 76 8.1 56 - -
1 18 124 13 90 9.5 66 7.1 49
R 30 207 21 146 16 107 11.5 79
1500 816 0.5 10.5 72 7.7 53 5.4 37 - -
1 12.5 86 9.1 63 6.5 45 4.3 30
R 21 141 15 103 11 72 7.2 50
1600 871 0.5 7.5 52 5.1 35 3.2 22 - -
1 8.9 61 6.2 43 3.9 27 2.3 16
R 15 100 10 69 6.8 47 4.2 29
1700 927 0.5 5.1 35 3.1 21 1.5 11 - -
1 6.2 43 3.8 26 2.2 15 1.1* 7.2*
R 10 69 6.6 46 4.0 28 2.4 17
1800 982 0.5 3.1 21 1.5 11 0.48 3.3 - -
1 3.8 26 2.2 15 1.0 6.9 0.33* 2.3*
R 6.7 46 4.0 28 2.3 16 1.2 8.3
1900 1038 0.5 1.6 11 - - - - - -
1 2.2 15 1.0 6.9 0.33* 2.3* - -
R 4.1 28 2.4 17 1.2 8.3 - -
2000 1093 0.5 0.62 4.3 - - - - - -
1 1.1 7.6 0.35 2.4 0.10* 0.69* - -
R 2.5 17 1.3 8.6 0.40 2.8 - -

*Significant extrapolation

Tensile Properties

Tensile Data, Plate

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
70 21 49.3 340 110.2 760 48.9
1000 538 32.5 224 87.6 604 60.2
1200 649 30.7 212 80.9 558 63.5
1400 760 31.6 218 61.0 421 74.5
1600 871 27.4 189 37.0 255 98.1
1800 982 13.6 94 20.0 138 98.1
2000 1093 6.5 45 10.4 72 95.3

Tensile Data, Sheet

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
70 21 54.5 376 113.5 783 46.5
1000 538 36.7 253 91.0 628 53.6
1200 649 34.9 241 84.2 580 65.5
1400 760 33.8 233 61.6 424 95.6
1600 871 28.0 193 36.5 251 117.9
1800 982 12.8 88 18.9 130 81.5
2000 1093 6.2 43 9.5 65 50.6

Average Effect of Cryogenic Temperatures on Tensile Properties

Form Condition Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
- - °F °C ksi MPa ksi MPa %
Plate Heat-treated at 2150°F(1177°C), Rapid Cooled -311 -196 - - 150.2 1036 46
-108 -78 - - 118.8 819 51
72 22 47.0 324 104.5 721 46

All Weld Metal

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa
RT RT 66.4 458 98.6 680 28 in 1 inch
600 316 52.1 359 80.4 554 27 in 1.125 inches
1000 538 49.2 339 76.3 526 28 in 1.125 inches
1500 816 38.2 263 56.7 391 45 in 1.125 inches

RT= Room Temperature

Average Aged Tensile Data, Room Temperature*

Form Aging Temperature Aging Time 0.2% Yield Strength Ultimate Tensile Strength Elongation
- °F °C h ksi MPa ksi MPa %
Sheet 0.125 in. (3.2mm) thick SHT SHT - 55.2 381 114.3 788 57
1200 649 1000 61.0 421 125.0 862 35
4000 76.2 525 143.8 991 19
8000 78.6 542 147.9 1020 19
16000 78.1 538 148.0 1020 15
1400 760 1000 65.3 450 137.0 945 23
4000 64.3 443 134.6 928 18
8000 61.3 423 131.0 903 19
16000 59.3 409 126.1 869 17
1600 871 1000 53.2 369 123.0 848 26
4000 49.3 340 117.9 813 29
8000 48.2 332 115.0 793 30
16000 46.1 318 111.1 766 29
Plate 1/2 in. (12.7mm) thick SHT SHT - 49.5 341 109.9 758 47
1200 649 1000 56.5 390 121.4 837 33
4000 73.4 506 142.5 983 18
8000 73.0 503 143.6 990 18
1400 760 1000 56.9 392 129.4 892 23
4000 56.9 392 129.9 896 21
8000 56.3 388 129.2 891 20
1600 871 1000 47.6 328 119.0 820 31
4000 44.9 310 116.7 805 28
8000 43.9 303 113.7 784 26
16000 42.7 394 109.0 752 26

*Test data for each form are from a single heat. SHT=Solution heat-treated (not aged).

Physical Properties

Physical Property British Units Metric Units
Density 72°F
0.297 lb/in3
22°C
8.22 g/cm3
Melting Range 2300 - 2470 °F 1260 - 1355°C
Electrical Resistivity 75°F 45.21 µohm-in 24°C 114.83 µohm-cm
100°F 45.38 µohm-in 38°C 115.27 µohm-cm
200°F 45.89 µohm-in 94°C 116.56 µohm-cm
300°F 46.31 µohm-in 149°C 117.63 µohm-cm
400°F 46.78 µohm-in 205°C 118.82 µohm-cm
500°F 47.2 µohm-in 260°C 119.88 µohm-cm
600°F 47.53 µohm-in 316°C 120.73 µohm-cm
700°F 47.93 µohm-in 371°C 121.73 µohm-cm
800°F 48.23 µohm-in 427°C 122.51 µohm-cm
900°F 48.61 µohm-in 483°C 123.46 µohm-cm
1000°F 49 µohm-in 538°C 124.46 µohm-cm
1100°F 49.38 µohm-in 594°C 125.44 µohm-cm
1200°F 49.53 µohm-in 649°C 125.81 µohm-cm
1300°F 49.61 µohm-in 705°C 126.02 µohm-cm
1400°F 49.68 µohm-in 760°C 126.2 µohm-cm
1500°F 49.73 µohm-in 816°C 126.32 µohm-cm
1600°F 49.8 µohm-in 871°C 126.5 µohm-cm
1700°F 49.81 µohm-in 927°C 126.52 µohm-cm
1800°F 49.67 µohm-in 983°C 126.17 µohm-cm
1900°F 49.59 µohm-in 1038°C 125.96 µohm-cm
2000°F 49.57 µohm-in 1094°C 125.9 µohm-cm
Thermal Conductivity 70°F
63 Btu-in/ft2-hr-°F
25°C 9.2 W/m-°C
200°F
76 Btu-in/ft2-hr-°F
100°C 11.2 W/m-°C
500°F
98 Btu-in/ft2-hr-°F
200°C 14.1 W/m-°C
1100°F
144 Btu-in/ft2-hr-°F
600°C 20.9 W/m-°C
1200°F
151 Btu-in/ft2-hr-°F
650°C 21.9 W/m-°C
1300°F
159 Btu-in/ft2-hr-°F
700°C 22.8 W/m-°C
1400°F
166 Btu-in/ft2-hr-°F
750°C 23.8 W/m-°C
1500°F
174 Btu-in/ft2-hr-°F
800°C 24.7 W/m-°C
1600°F
182 Btu-in/ft2-hr-°F
850°C 25.7 W/m-°C
1700°F
189 Btu-in/ft2-hr-°F
900°C 26.7 W/m-°C
Specific Heat RT 0.116 Btu/lb.-°F RT 486 J/kg-°C
200°F 0.117 Btu/lb.-°F 100°C 487 J/kg-°C
400 °F 0.118 Btu/lb.-°F 200°C 484 J/kg-°C
600°F 0.119 Btu/lb.-°F 300°C 491 J/kg-°C
800°F 0.123 Btu/lb.-°F 400°C 507 J/kg-°C
1000°F 0.130 Btu/lb.-°F 500°C 531 J/kg-°C
1200°F 0.139 Btu/lb.-°F 600°C 564 J/kg-°C
1400°F 0.151 Btu/lb.-°F 700°C 606 J/kg-°C
1600°F 0.167 Btu/lb.-°F 800°C 657 J/kg-°C
1800°F 0.186 Btu/lb.-°F 900°C 716 J/kg-°C
2000°F 0.205 Btu/lb.-°F 1000°C 784 J/kg-°C
Mean Coefficient of Thermal Expansion 79 - 200°F 7.7 µin/in.-°F 26 - 100°C
13.9 10-6m/m-°C
79 - 1000°F 8.4 µin/in.-°F 26 - 500°C
15.0 10-6m/m-°C
79 - 1200°F 8.6 µin/in.-°F 26 - 600°C
15.3 10-6m/m-°C
79 - 1350°F 8.8 µin/in.-°F 26 - 700°C
15.7 10-6m/m-°C
79 - 1400°F 8.9 µin/in.-°F 26 - 750°C
15.9 10-6m/m-°C
79 - 1500°F 8.9 µin/in.-°F 26 - 800°C
16.0 10-6m/m-°C
79 - 1600°F 9.1 µin/in.-°F 26 - 850°C
16.2 10-6m/m-°C
79 - 1650°F 9.1 µin/in.-°F 26 - 900°C
16.4 10-6m/m-°C
79 - 1800°F 9.2 µin/in.-°F 26 - 975°C
16.6 10-6m/m-°C
Dynamic Modulus of Elasticity RT
29.8 x 106 psi
RT 205 GPa
200°F
29.4 x 106 psi
100°C 202 GPa
400°F
28.6 x 106 psi
200°C 198 GPa
600°F
27.8 x 106 psi
300°C 192 GPa
800°F
26.7 x 106 psi
400°C 187 GPa
1000°F
25.8 x 106 psi
500°C 180 GPa
1200°F
24.7 x 106 psi
600°C 173 GPa
1400°F
23.3 x 106 psi
700°C 165 GPa
1600°F
22.2 x 106 psi
800°C 157 GPa
1800°F
20.4 x 106 psi
900°C 148 GPa
Poisson's Ratio -108°F 0.328 -78 °C 0.328
72°F 0.32 22 °C 0.32
Magnetic Permeability RT 1.002 at 200 oersteds (15,900 A/m)

*RT = Room Temperature

Hardness and Grain Size

Room Temperature Hardness of Material Solution Annealed at 2150°F

Form Hardness, HRBW Typical ASTM Grain Size
Sheet 86 3-5
Plate 87 3.5-6
Bar 88 2-5

HRBW = Hardness Rockwell “B”, Tungsten Indentor.

Aged Hardness

Aged Hardness at Room Temperature*

Form Aging Temperature Aging Time HRBW
- °F °C h -
Sheet SHT SHT - 54
1200 649 1000 56
4000 62
8000 63
1400 760 1000 62
4000 61
8000 60
1600 871 000 61
4000 58
8000 55
Plate SHT SHT - 54
1200 649 1000 57
4000 62
8000 63
1400 760 1000 60
4000 59
8000 58
1600 871 1000 56
4000 56
8000 54
All Weld Metal** 1200 649 1000 64
4000 65
8000 63
1400 760 1000 62
4000 60
8000 60
1600 871 1000 56
4000 55
8000 54

SHT=Solution heat-treated (not aged)
*Single tests from a single heat for each form
**Gas tungsten arc welded
HRBW = Hardness Rockwell “B”, Tungsten Indentor.

Formability

Sheet

HASTELLOY® X alloy Formability

Condition Typical Olsen cup Depth
in. mm
Heat-treated at 2150°F(1177°C), Rapid Cooled 0.48 12.3

Impact Strength

Average Impact Strength, Plate*

Condition Test Temperature Average Charpy V-Notch Impact Strength
ft. - lb. J
Heat-treated at 2100°F (1149°C),Water Quenched RT 103 140

*Average of 28 samples from multiple heats, 0.413″ – 1.25″ thick, tested during years 2007 – 2014.

Aged Plate*

Aging Temperature Aging Time Average Charpy V-Notch Impact Strength
°F °C h ft.-lb. J
SHT SHT - 95 129
1200 649 1000 24 33
4000 12 16
8000 15 20
1400 760 1000 10 14
4000 10 14
8000 8 11
1600 871 1000 15 20
4000 12 16
8000 15 20
16000 12 16

SHT=Solution heat-treated (not aged)  * Average of four tests on 1/2-in. (12.7mm) plate from a single heat.

Oxidation Resistance

Comparative Static Oxidation Data in Flowing Air for 1008 Hours*

Alloy 1800°F (980°C) 2000°F (1095°C)
Metal Loss/Side Metal Loss + CIP**/Side Metal Loss/Side Metal Loss + CIP**/Side
- mils mm mils mm mils mm mils mm
X 0.29 0.007 0.74 0.019 1.5 0.038 2.7 0.069
INCONEL® 600 0.32 0.008 0.90 0.023 1.1 0.028 1.6 0.041
INCONEL® 601 0.53 0.013 1.3 0.033 1.2 0.031 2.6 0.06
625 0.32 0.008 0.72 0.018 3.3 0.083 4.8 0.12
800H® 0.024 0.024 1.8 0.046 5.4 0.137 7.4 0.19

*Cycled to room temperature once a week   **CIP=Continuous Internal Penetration
INCONEL is a trademark of Inco Family of Companies

Schematic Representation of Metallographic Technique used for
Elevating Oxidation Tests

Comparative Average Hot Corrosion Resistance*

Test Temperature Test Period Total Metal Affected/Side
X 188 S
°F °C h mils mm mils mm mils mm
1650 900 200 3.0 0.08 2.7 0.07 2.1 0.05
1650 900 1000 6.8 0.17 7.5 0.19 3.7 0.09

*All tests performed by exposure to the combustion products of No. 2 fuel oil (0.4 percent sulfur) and 5 ppm of sea salt. Gas velocity over samples was 13 ft./sec. (4m/s). Thermal shock frequency was one/hour.

Carburization Resistance

Tests were performed in a carburizing environment with an inlet gas mixture (volume %) of 5.0% H2, 5.0% CO, 5.0% CH4 and the balance argon. The calculated oxygen potential and carbon activity at 1800°F (980°C) were 9 x 10-22 atm. and 1.0, respectively.

The results are presented in terms of the mass of carbon pickup per unit area, which was obtained from the equation M = C (W/A) where M = the mass of carbon pickup per unit area (mg/cm2), C = difference in carbon (weight fraction) before and after exposure, W = weight of the unexposed specimen (mg) and A = surface area of the specimen exposed to the test environment (cm2).

Comparative Carburization Resistance at 1800°F (980°C) for 55 Hours

Welding

HASTELLOY® X alloy is readily welded by Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Shielded Metal Arc Welding (SMAW), and resistance welding techniques. Submerged Arc Welding (SAW) is not recommended as this process is characterized by high heat input to the base metal and slow cooling of the weld.  These factors can increase weld restraint and promote cracking.

Base Metal Preparation

The welding surface and adjacent regions should be thoroughly cleaned with an appropriate solvent prior to any welding operation.   All greases, oils, cutting oils, crayon marks, machining solutions, corrosion products, paint, scale, dye penetrant solutions, and other foreign matter should be completely removed.  It is preferable, but not necessary, that the alloy be in the solution- annealed condition when welded.

Filler Metal Selection

HASTELLOY® X filler wire (AWS A5.14, ERNiCrMo-2) is recommended for joining X alloy by Gas Tungsten Arc or Gas Metal Arc welding.  Coated electrodes of X alloy are also available for Shielded Metal Arc welding in non-ASME code construction.  For dissimilar metal joining of X  alloy to nickel-, cobalt-, or iron- base materials, X filler wire, HAYNES® 556® alloy (AWS A5.9 ER3556, AMS 5831) , HASTELLOY® S alloy (AMS 5838) or HASTELLOY® W alloy (AMS 5786, 5787) welding products may all be considered, depending upon the particular case. Please click here or the Haynes Welding SmartGuide for more information.

Preheating, Interpass Temperatures, and Post- Weld Heat Treatment

Preheat is not required. Preheat is generally specified as room temperature (typical shop conditions).   Interpass temperature should be maintained below 200°F (93°C). Auxiliary cooling methods may be used between weld passes, as needed, providing that such methods do not introduce contaminants.  Post-weld heat treatment is not generally required for X alloy.  For further information, please click here.

Nominal Welding Parameters

Details for GTAW, GMAW and SMAW welding are given here. Nominal welding parameters are provided as a guide for performing typical operations and are based upon welding conditions used in our laboratories.

Mechanical Properties of Welded Material

Room Temperature Hardness of Welded Sheet

Weld Method Test Area HRBW
Shielded Metal Arc (covered electrodes) Weld Area 92
Heat-Affected Zone 93
Base Metal 91
Gas Tungsten Arc (TIG) Weld Area 89
Heat-Affected Zone 93
Base Metal 91
Gas Metal Arc (MIG) Weld Area 90
Heat-Affected Zone 93
Base Metal 91

Note: Sheet was solution heat-treated prior to welding. Hardness was determined at room temperature in the as-welded condition.
HRBW = Hardness Rockwell “B”, Tungsten Indentor.

Average Short-term Tensile Data, Cold-reduced and Welded 0.109 in. (2.8mm) Sheet

Condition Form 0.2% Yield Strength Ultimate Tensile Strength
- - ksi MPa ksi MPa
As Cold-reduced Reduced 5% 82.0 565 123.0 848
Reduced 15% 106.0 731 137.0 945
Reduced 30% 137.0 945 161.0 1110
Cold-reduced and Welded, As Welded Reduced 5% 68.0 469 114.9 792
Reduced 15% 72.1 497 113.1 780
Reduced 30% 69.9 482 112.9 778

NOTE: All cold-reduced sheet and the various weld samples were produced from material which had been solution heat-treated prior to cold reduction or welding. All data were obtained at room temperature and are the result of a limited number of tests.

Average Tensile Data, Weldments

Condition Weld Method Material 0.2% Yield Strength Ultimate Tensile Strength Elongation
- - - ksi MPa ksi MPa %
As-Welded Shielded Metal Arc(covered electrodes) Sheet, 0.125 in. (3.2mm) 55.2 381 110.2 760 26
Plate, 0.250 in. (6.4mm) 56.7 391 109.8 757 26
Plate, 0.375 in. (9.5mm) 55.4 382 110.2 760 26
As-Welded Gas Tungsten Arc (TIG) Sheet, 0.125 in. (3.2mm) 59.1 407 110.2 759 26
Plate, 0.250 in. (6.4mm) 53.1 365 107.1 738 25
Plate, 0.375 in. (9.5mm) 54.9 379 107.6 742 22
As-Welded Gas Metal Arc(MIG) Sheet, 0.125 in. (3.2mm) 53.1 366 103.7 715 22
Plate, 0.250 in. (6.4mm) 55.0 379 110.8 764 33
Plate, 0.375 in. (9.5mm) 57.0 393 106.4 734 24

All Weld Metal

Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 66.4 458 98.6 680 28 in 1 inch
600 316 52.1 359 80.4 554 27 in 1.125 inches
1000 538 49.2 339 76.3 526 28 in 1.125 inches
1500 816 38.2 263 56.7 391 45 in 1.125 inches

RT= Room Temperature

Average Welded and Aged Tensile Data, Room Temperature*

Form Aging Temperature Aging Time 0.2% Yield Strength Ultimate Tensile Strength Elongation
- °F °C h ksi MPa ksi MPa %
Plate 1/2 in (12.7mm) thick 1600 871 8000 47.9 330 109.0 752 22
Gas Tungsten Arc Welded Plate, 1/2 in. (12.7mm) thick 1200 649 1000 66.0 455 126.9 875 33
4000 86.5 596 150.1